Persoalan pertemuanDilema pertemuan bisa digambarkan sebagai berikut:
Apabila mereka berdua memilih menunggu, mereka tidak akan pernah bertemu. Apabila mereka memilih mencari, mereka bisa saja bertemu atau tidak bertemu. Apabila satu orang memilih menunggu dan satu lagi berjalan, mereka pada akhirnya akan bertemu; dalam praktiknya, proses mencari seperti ini memakan waktu yang sangat lama. Persoalannya adalah: apa strategi yang perlu mereka ambil untuk memaksimalkan peluang bertemu? Contoh persoalan seperti ini dikenal dengan istilah persoalan pertemuan. Persoalan ini pertama kali diperkenalkan secara tidak formal oleh Steve Alpern pada tahun 1976.[1] Ia membahas lebih lanjut persoalan ini secara formal pada tahun 1995.[2] Sejak itu, banyak peneliti yang mendalami permasalahan ini.[3] Persoalan pertemuan simetris yang disimulasikan di n lokasi tertentu (kadang disebut Mozart Cafe Rendezvous Problem)[4] ternyata sangat sulit diselesaikan. Pada tahun 1990, Richard Weber dan Eddie Anderson memperkirakan strategi yang optimal.[5] Perkiraan yang dibuktikan Weber adalah n = 3.[6] Ini merupakan persoalan pertemuan simetris non-trivial pertama yang selesai sepenuhnya. Ingat bahwa persoalan pertemuan asimetris memiliki satu solusi optimal yang sederhana: satu pihak menunggu di lokasi awal dan pihak lain mencarinya menggunakan permutasi lokasi acak. Selain dalam teori, dilema janji temu juga diterapkan di dunia nyata, misalnya di bidang sinkronisasi, rancangan sistem operasi, penelitian operasi, dan bahkan perencanaan operasi pencarian dan penyelamatan. Persoalan pertemuan deterministikPersoalan pertemuan deterministik adalah varian dilema pertemuan. Para pihak atau robot harus menemukan satu sama lain dengan mengikuti urutan instruksi yang deterministik. Meski setiap robot mengikuti urutan instruksi yang sama, sebuah label unik di setiap robot digunakan untuk mencegah kemiripan.[7] Lihat pula
Referensi
|