Die voorwerp is 'n helder en baie kompakte radiobron. Die naam Sagittarius A* is om historiese redes daaraan gegee. In 1954[6] het John D. Kraus, Hsien-Ching Ko en Sean Matt by 250 MHz na die radiobronne geluister wat hulle geïdentifiseer het met die radioteleskoop van die Universiteit van Ohio. Hulle het die bronne gerangskik volgens sterrebeeld en het hoofletters toegeken in volgorde van helderheid binne elke sterrebeeld; A het die helderste radiobron binne die sterrebeeld aangedui. Die asterisk (*) is later bygevoeg omdat die ontdekking as opwindend (exciting) beskou is,[7] in ooreenstemming met die naam vir atome in 'n opgewekte (excited) toestand wat met 'n asterisk aangedui word (die opgewekte toestand van helium is byvoorbeeld He*). Die asterisk is in 1982 toegevoeg deur Robert L. Brown,[8] wat verstaan het die sterkste radio-emissie van die middel van die sterrestelsel kom moontlik van 'n kompakte, nietermiese radiovoorwerp.
Waarnemings van verskeie sterre, veral S2, in ’n wentelbaan om Sagittarius A* is gebruik om die massa en grootte van die voorwerp vas te stel. Op grond van dié waarnemings is bepaal dat Sagittarius A* die ligging is van die Melkweg se supermassiewe swartkolk,[9] soos dié wat nou algemeen aanvaar word in die middel van die meeste spiraal- en elliptiese sterrestelsels voorkom. Die huidige raming van sy massa is 4,154 (± 0,014) miljoen sonmassas.[2]
Die astrofisici Reinhard Genzel en Andrea Ghez het in 2020 die Nobelprys vir fisika gewen vir hulle ontdekking dat Sagittarius A* 'n supermassiewe, kompakte voorwerp is, waarvoor 'n swartkolk destyds die enigste sinvolle verduideliking was.[10]
Op 12 Mei 2022 het sterrekundiges 'n foto (regs bo) van die akkresieskyf om Sagittarius A* uitgereik wat deur die Event Horizon-teleskoop, 'n wêreldwye netwerk van radiosterrewagte, geskep is met data van April 2017.[11] Dit het bevestig dat die voorwerp 'n swartkolk is. Dit is slegs die tweede bevestigde foto van 'n swartkolk, ná dié in 2019 van die supermassiewe swartkolk in Messier 87.[12][13] Die swartkolk self kan nie gesien word nie; net nabygeleë voorwerpe wat deur die swartkolk beïnvloed word. Die waargenome radio- en infrarooi-energie kom van gas en stof wat tot miljoene grade verhit word terwyl dit in die swartkolk val.[14]
Waarneming en beskrywing
Op 12 Mei 2022 het die Event Horizon Telescope Collaboration die eerste foto van Sagittarius A* uitgereik. Die beeld, wat gebaseer is op radiodata van 2017, bevestig dat die voorwerp 'n swartkolk bevat. Dit is die tweede beeld van 'n swartkolk.[12][15] Dit het vyf jaar van berekenings geduur om die foto te prosesseer.[16] Die data is ingewin deur agt radiosterrewagte op ses geografiese terreine. Radiobeelde word geskep van data wat gewoonlik deur die nag van stabiele bronne geneem word. Die radio-emissies van Sgr A* wissel by minute, wat ontleding kompliseer.[17]
Die resultaat gee 'n algehele skynbare grootte vir die bron van 51,8±2,3 μas.[15] Op 'n afstand van 26 000 ligjare gee dit 'n deursnee van 51,8 miljoen kilometer. In vergelyking is die Aarde 1 AE (150 miljoen km) van die Son af, en Mercurius is 0,31 AE (46 miljoen km) van die Son af met perihelium. Die eiebeweging van Sgr A* is sowat -2,7 mas (milliboogsekondes) per jaar vir die regte klimming en -5,6 mas per jaar vir die deklinasie.[18][19] Die teleskoop se meting van dié swartkolke het Einstein se relatiwiteitsteorie strenger as ooit tevore getoets, en die resultate kom perfek ooreen.[13]
In 2019 het metings deur die SOFIA-vliegtuig[20] onthul magneetvelde veroorsaak dat die omringende ring van stof en gas, waarvan temperature tussen 99,8 en 9 977,6 K (-173,3 en 9 704,4 °C) wissel,[21] in 'n wentelbaan om Sgr A* beweeg en swartkolkuitstralings laag hou.[22]
Sterrekundiges kan Sgr A* nie in die sigbare spektrum waarneem nie weens groot hoeveelhede stof en gas tussen die bron en die Aarde.[23]
Geskiedenis
In April 1933 het Karl Jansky, wat as een van die vaders van radio-astronomie beskou word, ontdek 'n radiosein kom van 'n plek in die rigting van die sterrebeeld Boogskutter, naby die middel van die Melkweg.[24] Die radiobron het later bekend geword as Sagittarius A. Sy waarnemings het nie so ver suid gestrek as waar ons nou weet die middel van ons sterrestelsel geleë is nie.[25] In waarnemings deur Jack Piddington en Harry Minnett in Sydney, Nieu-Suid-Wallis, is 'n helder Boogskutter-Skerpioen-radiobron ontdek,[26] wat in 'n brief aan die tydskrif Nature beskryf is as die moontlike galaktiese sentrum nadat nog waarnemings in Dover Heights, Nieu-Suid-Wallis, gedoen is.[27]
Latere waarnemings het gewys Sagittarius A bestaan eintlik uit verskeie oorvleuelende subkomponente; 'n helder en baie kompakte komponent, Sgr A*, is op 13 en 15 Februarie 1974 deur die sterrekundiges Bruce Balick en Robert Brown ontdek.[29][30] Die naam Sgr A* is die eerste keer deur Brown gebruik in 'n geskrif in 1982, omdat die radiobron "opwindend" (exciting) was en die opgewekte (excited) toestand van atome met 'n asterisk aangedui word.[31][32]
Dit was sedert die 1980's duidelik dat die sentrale komponent van Sgr A waarskynlik 'n swartkolk is. In 1994 is spektroskopiese navorsing by Berkeley gedoen deur 'n span met onder andere die Nobelpryswenner Charles H. Townes en die toekomsige Nobelpryswenner Reinhard Genzel wat gewys het die massa van Sgr A* was baie gekonsentreerd en gelykstaande aan dié van sowat 3 miljoen sonne.[33]
Op 16 Oktober 2002 het 'n internasionale span onder Reinhard Genzel by die Max Planck-instituut vir Buiteaardse Fisika die waarneming berig van die beweging oor 'n tydperk van 10 jaar van 'n ster, S2, naby Sagittarius A*. Volgens die span se ontleding met naby-infrarooi- (NIR)-interferometrie het die data die moontlikheid uitgesluit dat Sgr A* 'n swerm donker stellêre voorwerpe of 'n massa ontaarde fermione bevat, wat die bewyse van 'n supermassiewe kolk versterk het. SiO- astrofisiese masers is gebruik om die NIR-beelde met radiowaarnemings op te lyn, want hulle kan in NIR- én radiobande waargeneem word. Die vinnige beweging van S2 (en ander nabygeleë sterre) het duidelik uitgestaan bo dié van stadiger bewegende sterre aan die siglyn en hulle kon dus afgesonder word.[34][35]
In die navorsing is ontdek die fokus van S2 se elliptiese wentelbaan stem ooreen met die posisie van Sagittarius A*. Deur die Keplerwentelbaan van S2 te ondersoek, is vasgestel die massa van Sagittarius A* is 4,1±0,6 miljoensonmassas, wat beperk is binne 'n volume met 'n radius van nie meer nie as 17 ligure (120 AE of 18 miljard kilometer).[37] Latere waarnemings van die ster S14 het gewys die voorwerp se massa is sowat 4,1 miljoen sonmassas in 'n volume met 'n radius van nie meer nie as 6,25 ligure (45 AE of 6,7 miljard kilometer).[38] S175 het binne 'n soortgelyke afstand verbybeweeg.[39] Die Schwarzschild-radius is in vergelyking 0,08 AE (12 miljoen kilometer). Hulle het ook die Aarde se afstand van die galaktiese sentrum af (die middelpunt van die Melkweg waarom dit roteer) vasgestel as sowat 26 000 ± 2 000 ligjare, wat belangrik is in die kalibrering van astronomiese afstandskale.
In November 2004 het 'n span sterrekundiges die ontdekking aangekondig van 'n moontlike swartkolk met 'n middelgroot massa, wat GCIRS 13E genoem word, wat drie ligjare van Sagittarius A* af wentel. Dié swartkolk, met 'n massa van 1 300 sonmassas, is binne 'n swerm van sewe sterre geleë. Dit kan die mening verder bevestig dat supermassiewe swartkolke groei deur kleiner nabygeleë swartkolke en sterre te absorbeer.
Nadat hulle sterwentelbane om Sagittarius A* altesaam 16 jaar lank gemonitor het, het Gillessen et al. geraam die voorwerp se massa is 4,31±0,38 miljoen sonmassas. Die resultaat is in 2008 aangekondig en in 2009 in The Astrophysical Journal gepubliseer.[41]
Reinhard Genzel, die spanleier, het gesê die navorsing het die beste bewys nog gelewer dat supermassiewe swartkolke werklik bestaan. "Die sterwentelbane in die galaktiese sentrum wys die sentrale massakonsentrasie van 4 miljoen sonmassas moet sonder enige twyfel 'n swartkolk wees."[42]
Op 5 Januarie 2015 het Nasa die waarneming van 'n X-straalopvlamming in Sgr A* aangekondig wat 400 keer so helder as gewoonlik was. Dié ongewone voorval kon veroorsaak gewees het deur die opbreking van 'n asteroïde wat in die swartkolk geval het of deur die verstrengeling van magneetveldlyne in gas wat in Sgr A* ingevloei het, volgens sterrekundiges.[40]
Op 13 Mei 2019 het sterrekundiges wat die Keck-sterrewag gebruik het, 'n skielike verheldering van Sgr A* waargeneem wat 75 keer helderder as gewoonlik was en daarop dui dat nog 'n voorwerp in die swartkolk kon geval het.[43]
Sentrale swartkolk
In 'n verslag van 31 Oktober 2018 is die ontdekking aangekondig van oortuigende bewyse dat Sagittarius A* 'n swartkolk is. Met die GRAVITY-interferometer en die vier teleskope van die Baie Groot Teleskoop is 'n virtuele teleskoop geskep van 130 m breed. Daarmee het sterrekundiges klonte gas waargeneem wat teen sowat 30% van die ligsnelheid beweeg. Uitstralings van hoogs energieke elektrone baie na aan die swartkolk was sigbaar as drie prominente, helder flikkerings. Dit stem presies ooreen met teoretiese voorspellings vir warmkolle wat naby 'n swartkolk van 4 miljoen sonmassas wentel. Die flikkerings kom vermoedelik van magnetiese wisselwerkings in die baie warm gas wat naby aan Sagittarius A* wentel.[14][44]
In Julie 2018 is berig die ster S2, wat om Sgr A* wentel, se snelheid is in Mei 2018 vasgestel op 7 650 km/s, of 2,55% die ligsnelheid, terwyl dit op pad was na sy episentrum, of naaste afstand, teen sowat 120 AE (18 miljard km of 1 400 Schwarzschild-radiusse) van Sgr A* af. Einstein se teorie oor algemene relatiwiteit voorspel dat S2 op so 'n kort afstand van 'n swartkolk af 'n merkbare gravitasionele rooiverskuiwing sal toon benewens die gewone snelheidsrooiverskuiwing; dié gravitasionele rooiverskuiwing is waargeneem binne die omvang waarin dit voorspel is.[45][46]
As aangeneem word algemene relatiwiteit is steeds 'n geldige beskrywing van swaartekrag naby die waarnemingshorison, is Sagittarius A* se radio-emissies nie op die swartkolk gesentreer nie, maar kom dit van 'n helder kol in die streek om die swartkolk, naby die waarnemingshorison, moontlik in die akkresieskyf of 'n relativistiese stroom materiaal (geïoniseerde materiaal wat tot naby die ligsnelheid versnel word) wat uit die skyf geskiet word.[47] As die skynbare posisie van Sagittarius A* presies in die middel van die swartkolk gesentreer was, sou dit moontlik wees om 'n vergroting daarvan te sien vanweë 'n gravitasielens. Volgens algemene relatiwiteit sou dit 'n ringagtige struktuur tot gevolg hê met 'n deursnee van sowat 5,2 keer die swartkolk se Schwarzschild-radius. Vir 'n swartkolk van sowat 4nbsp;miljoen sonmassas is dit 'n grootte van sowat 52 μas, wat ooreenstem met die waargenome grootte van sowat 50 μas.[47]
Die relatief klein massa van die supermassiewe swartkolk en die lae helderheid van die radio- en infrarooi emissielyne dui daarop dat die Melkweg nie 'n Seyfert-sterrestelsel is nie.[23]
Onlangse waarnemings teen 'n laer resolusie het onthul dat die radiobron van Sagittarius A* simmetries is.[48] Simulasies van alternatiewe teorieë van swaartekrag voorspel resultate wat moeilik kan wees om van algemene relatiwiteit te onderskei.[49] 'n Verslag van 2018 voorspel egter 'n beeld van Sagittarius A* wat ooreenstem met onlangse waarnemings; dit verduidelik veral die klein skynbare grootte en die simmetriese morfologie van die bron.[50]
Wat op die ou einde gesien kan word, is nie die swartkolk self nie, maar waarnemings wat net moontlik is as daar wel 'n swartkolk naby Sgr A* is. In die geval van so 'n swartkolk kom die waargenome radio- en infrarooi energie uit gas en stof wat tot miljoene grade verhit word terwyl dit in die swartkolk val.[14] Die swartkolk straal vermoedelik net Hawkingstraling uit by 'n onbeduidende temperatuur, in die omgewing van 10-14kelvin.
Die Europese Ruimteagentskap se gammastraalsterrewag INTEGRAL het gammastrale waargeneem wat in 'n wisselwerking met die nabygeleë reuse- molekulêre wolk Sagittarius B2 is en veroorsaak dat X-strale uit die wolk straal. Die totale helderheid van dié uitbarsting (L≈1,5×1039 erg/s) word geraam as 'n miljoen keer sterker as die huidige uitset van Sgr A* en is vergelykbaar met die tipiese kern van 'n aktiewe sterrestelsel.[51][52] In 2011 is dié gevolgtrekking bevestig deur Japannese sterrekundiges wat die middel van die Melkweg met die Suzaku-satelliet bestudeer het.[53]
In Julie 2019 het sterrekundiges aangekondig hulle het 'n ster, S5-HVS1, ontdek wat teen 1 755 km/s beweeg. Die ster is in die sterrebeeld Kraanvoël in die suidelike lughemel, sowat 29 000 ligjare van die Aarde af, en is dalk uit die Melkweg geskiet ná 'n wisselwerking met Sagittarius A*.[54][55]
Wentelende sterre
Daar is 'n paar sterre, bekend as S-sterre, wat naby aan Sagittarius A* wentel.[61] Hulle word hoofsaaklik in infrarooi waargeneem, aangesien interstellêre stof die sigbaarheid in sigbare golflengtes aansienlik beperk.
Dit is 'n vinnig veranderende veld – in 2011 is die wentelbane van die prominentste sterre wat toe bekend was, in die diagram links saamgevat, met 'n vergelyking tussen hulle wentelbane en verskeie van dié in die Sonnestelsel.[57] Sedertdien is bevind S62 kom selfs nader as dié sterre.[62]
Hulle hoë snelhede en nabye wentelbane maak dié sterre nuttig om beperkings te stel op die fisiese afmetings van Sagittarius A*, sowel as om invloede wat met algemene relatiwiteit verband hou waar te neem, soos die periapsideverskuiwings van hulle wentelbane. Hulle word fyn dopgehou ingeval hulle naby afstande aan die waarnemingshorison hulle versteur, maar dit sal vermoedelik met geen van dié sterre gebeur nie.
Die waargenome verspreiding van die vlakke van die wentelbane van die S-sterre beperk die tolling van Sagittarius A* tot minder as 10% van sy teoretiese maksimum waarde.[63]
Sedert 2020 is S4714 die rekordhouer vir die naaste afstand aan Sagittarius A*, sowat 12,6 AE – amper so naby as wat Saturnus aan die Son kom. Dit beweeg teen sowat 8% van die ligsnelheid. Sy wentelperiode is 12 jaar, maar 'n buitengewone eksentrisiteit van 0,985 veroorsaak 'n naby afstand en hoë snelheid.[64]
↑Balick, B.; Brown, R. L. (1 Desember 1974). "Intense sub-arcsecond structure in the galactic center". Astrophysical Journal. 194 (1): 265–270. Bibcode:1974ApJ...194..265B. doi:10.1086/153242.
↑Brown, R. L. (1 November 1982). "Precessing jets in Sagittarius A – Gas dynamics in the central parsec of the galaxy". Astrophysical Journal, Part 1. 262: 110–119. Bibcode:1982ApJ...262..110B. doi:10.1086/160401.
↑Ghez, A. M.; et al. (Desember 2008). "Measuring Distance and Properties of the Milky Way's Central Supermassive Black Hole with Stellar Orbits". Astrophysical Journal. 689 (2): 1044–1062. arXiv:0808.2870. Bibcode:2008ApJ...689.1044G. doi:10.1086/592738.
↑Gillessen, S.; Plewa, P. M.; Eisenhauer, F.; Sari, R.; Waisberg, I.; Habibi, M.; Pfuhl, O.; George, E.; Dexter, J. (2017). "An Update on Monitoring Stellar Orbits in the Galactic Center". The Astrophysical Journal (in Engels). 837 (1): 30. arXiv:1611.09144. Bibcode:2017ApJ...837...30G. doi:10.3847/1538-4357/aa5c41. ISSN0004-637X.
↑Koposov, Sergey E.; et al. (11 November 2019). "Discovery of a nearby 1700 km/s star ejected from the Milky Way by Sgr A*". Monthly Notices of the Royal Astronomical Society. arXiv:1907.11725. doi:10.1093/mnras/stz3081. S2CID198968336.
↑Peißker, Florian; Eckart, Andreas; Zajaček, Michal; Basel, Ali; Parsa, Marzieh (Augustus 2020). "S62 and S4711: Indications of a Population of Faint Fast-moving Stars inside the S2 Orbit—S4711 on a 7.6 yr Orbit around Sgr A*". The Astrophysical Journal. 889 (50): 5. arXiv:2008.04764. Bibcode:2020ApJ...899...50P. doi:10.3847/1538-4357/ab9c1c.
Verdere bronne
Backer, D. C.; Sramek, R. A. (20 Oktober 1999). "Proper Motion of the Compact, Nonthermal Radio Source in the Galactic Center, Sagittarius A*". The Astrophysical Journal. 524 (2): 805–815. arXiv:astro-ph/9906048. Bibcode:1999ApJ...524..805B. doi:10.1086/307857.