জটিল সংখ্যাগণিতে জটিল সংখ্যা (ইংরেজি: Complex number)-কে বাস্তব সংখ্যার একটি গাণিতিক সম্প্রসারণ হিসেবে গণ্য করা হয়। কাল্পনিক একক i কে বাস্তব সংখ্যাসমূহের সাথে যুক্ত করে জটিল সংখ্যা পাওয়া যায়। i কে নিচের সমীকরণের সাহায্যে সংজ্ঞায়িত করা হয়[১]: প্রতিটা জটিল সংখ্যাকেই a+ib আকারে লেখা যায়, যেখানে a এবং b বাস্তব সংখ্যা। a কে জটিল সংখ্যার বাস্তব অংশ এবং b-কে জটিল সংখ্যার কাল্পনিক অংশ বলা হয়। জটিল সংখ্যাগুলি একটি ফিল্ড তৈরি করে। এই কারণে এদের উপর যোগ, বিয়োগ, গুণ ও ভাগ—এই চারটি দ্বিমিক অপারেশন প্রয়োগ করা সম্ভব। এই জটিল সংখ্যার অপারেশনগুলি বাস্তব সংখ্যার অপারেশনগুলিরই সম্প্রসারিত রূপ। তবে জটিল সংখ্যার উপর প্রয়োগ করার সময় এসব অপারেশনের আরও কিছু কার্যকর বৈশিষ্ট্য পরিলক্ষিত হয়। যেমন, কিছু জটিল সংখ্যাকে বর্গ করে ঋণাত্মক বাস্তব সংখ্যা পাওয়া সম্ভব। ইতালীয় গণিতবিদ জিরোলামো কার্দানো ত্রিঘাত সমীকরণ সমাধান করতে গিয়ে প্রথম জটিল সংখ্যা আবিষ্কার করেন[২]। তিনি এগুলিকে "কাল্পনিক" অভিধা দিয়েছিলেন। সাধারণ ত্রিঘাত সমীকরণের সমাধান প্রক্রিয়ায় অনেক মধ্যবর্তী হিসেবের সময় এমন কিছু পদ চলে আসে যেগুলোতে ঋণাত্মক সংখ্যার বর্গমূল থাকে, এমনকি যখন মূল সমাধানে শুধু বাস্তব সংখ্যা থাকে তখনও। এই পর্যবেক্ষণ থেকেই বীজগণিতের মৌলিক উপপাদ্যের সৃষ্টি। এই উপপাদ্য অনুসারে জটিল সংখ্যার সাহায্যে এক বা একের বেশি মাত্রার যে কোন বহুপদী সমীকরণের সমাধান খুঁজে বের করা সম্ভব। জটিল সংখ্যার যোগ, বিয়োগ, গুণ এবং ভাগের নিয়ম প্রথমে তৈরি করেন ইতালীয় গণিতবিদ রাফায়েল বোমবেল্লি। আইরিশ গণিতবিদ উইলিয়াম রোয়ান হ্যামিলটন জটিল সংখ্যার আরও বিমূর্ত একটি বিধিবদ্ধ রূপ দেন। তিনি জটিল সংখ্যার তত্ত্বকে চতুষ্টির তত্ত্বে উন্নীত করেন। তড়িৎচৌম্বকত্ব, কোয়ান্টাম পদার্থবিজ্ঞান, ফলিত গণিত, বিশৃঙ্খলা তত্ত্ব ছাড়াও প্রকৌশলের বিভিন্ন ক্ষেত্রে জটিল সংখ্যার প্রচুর ব্যবহার রয়েছে। কিছু কিছু ক্ষেত্রে নাম থেকেও বোঝা যায় যে সেখানে এগুলিতে অন্তর্নিহিত গাণিতিক সংগঠন হিসেবে জটিল সংখ্যার ব্যবহার রয়েছে। যেমন- জটিল বিশ্লেষণ, জটিল ম্যট্রিক্স, জটিল বহুপদী এবং জটিল লি বীজগণিত। সংজ্ঞাপ্রতীক পদ্ধতিএকটি জটিল সংখ্যাকে সাধারণত a+ib আকারে প্রকাশ করা হয়, যেখানে a এবং b হচ্ছে বাস্তব সংখ্যা এবং i হচ্ছে কাল্পনিক একক, যেটি সংজ্ঞা মেনে চলে। বাস্তব সংখ্যা a কে বলা হয় জটিল সংখ্যাটির বাস্তব অংশ এবং বাস্তব সংখ্যা b কে বলা হয় জটিল সংখ্যাটির কাল্পনিক অংশ। যেমন- 3+2i একটা জটিল সংখ্যা, যার বাস্তব অংশ 3 এবং কাল্পনিক অংশ 2। যদি z = a + ib হয় তখন বাস্তব অংশ a কে প্রকাশ করা হয় Re(z) বা ℜ(z) এবং কাল্পনিক অংশ b কে প্রকাশ করা হয় Im(z) or ℑ(z) দ্বারা। জটিল সংখ্যার সার্বিক সেটকে C বা প্রতীক দিয়ে প্রকাশ করা হয়। বাস্তব সংখ্যার সেট R কে বলা যেতে পারে জটিল সংখ্যার সেট C এর একটা উপসেট যেখানে বাস্তব সংখ্যাগুলি হলো সেইসব জটিল সংখ্যা যাদের কাল্পনিক অংশ শূন্য। অর্থাৎ, বাস্তব সংখ্যা a কে a+0iহিসেবে ভাবা যেতে পারে। যেসব জটিল সংখ্যার বাস্তব অংশ শূন্য তাদেরকে বলা হয় বিশুদ্ধক াল্পনিক সংখ্যা, এবং 0+bi এর বদলে তাদেরকে শুধুমাত্র bi দ্বারা প্রকাশ করা হয়। এখন যদি a=0 এবং b = 1 হয় তখন 0+1i বা 1i লেখার বদলে সংখ্যাটিকে শুধু i লেখা হয়। কিছু কিছু ক্ষেত্রে (বিশেষ করে তড়িৎ প্রকৌশলে, যেখানে i দ্বারা বর্তনীর বিদ্যুৎ প্রবাহ নির্দেশ করা হয়), কাল্পনিক একককে i এর বদলে j দ্বারা প্রকাশ করা হয়।[৩] তাই জটিল সংখ্যাকে কখনো কখনো a+bj আকারে লিখতে দেখা যায়। সমতাদুইটি জটিল সংখ্যাকে পরস্পরের সমান বলা হয় যদি এবং কেবল যদি তাদের বাস্তব অংশ এবং কাল্পনিক অংশ পরস্পর সমান হয়। অন্যভাবে বললে, দুইটি জটিল সংখ্যা a+ib এবং c+id পরস্পরের সমান হবে যদি এবং কেবল যদি a = c এবং b = d হয়। অপারেশনবাস্তব সংখ্যার ক্রমজোড় হিসাবেজটিল সংখ্যাকে বাস্তব সংখ্যার একটি ক্রমজোড় (x,y) হিসেবে উপস্থাপন করা যেতে পারে, যেখানে সংখ্যাটি হচ্ছে জটিল সমতলে একটি বিন্দু, যেখানে x এবং y হচ্ছে স্থানাঙ্কের অক্ষ। ঠিক যেমন বাস্তব সংখ্যাগুলিকে সংখ্যারেখার উপর একটি বিন্দু হিসেবে প্রকাশ করা হয়। জটিল সংখ্যার ক্ষেত্রে ব্যবহার করা হয় জটিল সমতল বা জেড তল। এক্ষেত্রে x-অক্ষ বরাবর বাস্তব অংশ এবং y-অক্ষ বরাবর সংখ্যাটির অবাস্তব বা কাল্পনিক অংশ ধরা হয়। এখান থেকে সহজেই দেখা যায় (x,0) আকারের প্রতিটি জটিল সংখ্যাই আসলে জটিল সমতলে x-অক্ষ বরাবর একেকটা বিন্দু, যারা কিনা নিজেরা একই সাথে একেকটা বাস্তব সংখ্যা। এভাবে জটিল সমতলের x-অক্ষ বরাবর ধনাত্মক এবং ঋণাত্মক দিকে যেতে থাকলে আমরা R এর প্রতিটি সংখ্যা অর্থাৎ প্রত্যেকটা বাস্তব সংখ্যাকেই খুজে পাব। তার মানে আমরা এই x-অক্ষ কে আমাদের পরিচিত সংখ্যারেখা হিসেবে ভাবতে পারি। অতএব, দেখা যাচ্ছে সংখ্যারেখার প্রতিটি বিন্দুই আসলে জটিল সমতলের অন্তর্ভুক্ত। এখান থেকে সহজেই দেখা যায় যে । যদি (x,y) ক্রমজোড়টিকে আমরা z নাম দেই তাহলে লেখা হয়। যেখানে
দুইটি জটিল সংখ্যা এবং সমান হবে যদি তারা জটিল সমতলে একই বিন্দু নির্দেশ করে। অর্থাৎ হয়। তাদের যোগফল এবং গুণফল কে সংজ্ঞায়িত করা হয় যথাক্রমে: দ্বারা। লক্ষণীয় যে, এখানে বর্ণিত এই দুইটি অপারেশন হচ্ছে জটিল সংখ্যার সেটের উপর ক্রিয়াশীল দুইটি মৌলিক অপারেশন যারা বাস্তব সংখ্যার আনুসাঙ্গিক অপারেশন থেকে উৎসারিত। অর্থাৎ অপারেশনগুলোকে কোনোভাবে প্রতিপাদন করা হয়নি। শুধুমাত্র স্বীকার করে নেওয়া হয়েছে। যদি আমাদের আলোচ্য জটিল সংখ্যা দুইটির কাল্পনিক অংশ শূন্য হয়, তাহলে এই অপারেশন দুইটি বাস্তব সংখ্যার অপারেশনে পরিণত হয়। অর্থাৎ এবং এর জন্য। অর্থাৎ, জটিল সংখ্যা পদ্ধতি আসলে বাস্তব সংখ্যা পদ্ধতির একটা ‘ন্যাচারাল এক্সটেনশন’ বা ‘প্রাকৃতিক প্রবৃদ্ধি’ যে কোনো জটিল সংখ্যা কে একটু আগে বর্ণিত যোগের নিয়ম অনুসারে লেখা যেতে পারে এবং পূর্বে বর্ণিত গুণন এর নিয়ম অনুযায়ী একটু হিসাব করলেই আমরা পেতে পারি । অর্থাৎ, এখন আমরা যদি বাস্তব সংখ্যা x কে জটিল সমতলে ( x, 0 ) আকারে কল্পনা করি তাহলে দেখি যে এই সমীকরণে (y, 0) আসলে একটা বাস্তব সংখ্যা যেটি (0, 1) এর সাথে গুন হয়ে z এর অবাস্তব অংশ (0, y) তৈরি করছে। অর্থাৎ এই (0, 1) ই হল সেই কাল্পনিক একক যাকে আমরা এখন থেকে দ্বারা প্রকাশ করব। এখন (x, 0) আকারের রাশিসমূহকে শুধু x আকারে লিখলে আমরা পাই: যা আমাদের পরিচিত জটিল সংখ্যার আকার। এখন আমরা লক্ষ করি যে, অর্থাৎ যেখান থেকে আমাদের পরিচিত সূত্রটির সৃষ্টি। যদিও বর্গমূল অপারেশন টি ঋণাত্মক সংখ্যার উপর ধনাত্মক সংখ্যার মতো করে সংজ্ঞায়িত নয়। এই নোটেশনাল অ্যাবিউজ এর জন্য আমাদের প্রায়ই কিছু ভুল উপসংহারে পৌছাতে হয়। [৪] বীজগাণিতিক ভিত্তিতেজটিল সংখ্যার যোগ, বিয়োগ, গুণ, ভাগ—এই সব অপারেশনই বীজগণিতের সহযোগী বিধি, বিনিময় বিধি, এবং বণ্টন বিধি মেনে চলে এবং সেই সাথে এই সমীকরণটি মেনে চলে।
যেখানে c এবং d এর অন্তত একটি শূন্য নয়। জটিল সংখ্যার ফিল্ডএকটি ফিল্ড হচ্ছে একটি বীজগাণিতিক সংগঠন যার যোগ, বিয়োগ, গুণ, এবং ভাগের অপারেশনগুলি কিছু নির্দিষ্ট বীজগাণিতিক নিয়ম মেনে চলে। জটিল সংখ্যাগুলি একটা ফিল্ড গঠন করে যাকে C দ্বারা প্রকাশ করা হয়। নির্দিষ্ট করে বললে, জটিল সংখ্যাগুলির জন্য:
অন্যান্য ফিল্ডের মধ্যে আছে বাস্তব সংখ্যা এবং মূলদ সংখ্যাগুলি। যখন প্রতিটি বাস্তব সংখ্যা a কে জটিল সংখ্যা a + 0i আকারে প্রকাশ করা হয় তখন বাস্তব সংখ্যার ফিল্ড R জটিল সংখ্যার ফিল্ড C -এর একটি উপফিল্ড গঠন করে। জটিল সংখ্যার সার্বিক সেট C-কে বীজগাণিতিক সংখ্যাসমূহের টপোগাণিতিক আবদ্ধতা হিসেবে অথবা R এর বীজগাণিতিক আবদ্ধতা হিসেবে দেখানো যেতে পারে। নিচে উভয়েরই বর্ণনা দেওয়া হল। জটিল সমতলজটিল সংখ্যা z কে দেখা যেতে পারে একটি দ্বিমাত্রিক কার্তেসীয় স্থানাঙ্ক ব্যবস্থার উপর একটি অবস্থান ভেক্টর হিসেবে। এই দ্বিমাত্রিক কার্তেসীয় স্থানাঙ্ক ব্যবস্থাকে কে বলা হয় জটিল সমতল বা কম্পলেক্স প্লেন অথবা জেন-রবার্ট আরগ্যান্ড এর নামানুসারে আরগ্যান্ড সমতল (see Pedoe 1988 and Solomentsev 2001)। একটা জটিল সংখ্যা z কে তাই কার্তেসীয় স্থানাঙ্ক ব্যবস্থায় একটা বিন্দু হিসেবে ভাবা যায়। কার্তেসীয় স্থানাঙ্ক ব্যবস্থায় জটিল সংখ্যাটির x = Re(z) হচ্ছে x অক্ষ এবং একইভাবে y = Im(z) হচ্ছে y অক্ষ। একটি জটিল সংখ্যাকে এভাবে কার্তেসীয় আকারে প্রকাশিত রূপকে বলা হয় সংখ্যাটির আয়তাকার রূপ বা বীজগাণিতিক রূপ। পরম মান, অনুবন্ধী এবং দূরত্বএকটি জটিল সংখ্যা z=x+yi এর পরম মান (বা মডুলাস বা মান) হিসাব করা হয় দ্বারা। পরম মানের তিনটি গুরুত্বপূর্ণ বৈশিষ্ট্য হল:
এখানে z এবং w যেকোনো জটিল সংখ্যা। এখান থেকে আমরা পাই এবং . আমরা যদি জটিল সমতলে দূরত্বকে এভাবে সংজ্ঞায়িত করি যে , তাহলে জটিল সংখ্যার সেটটা একটা মেট্রিক স্পেস এ পরিণত হয় এবং তখন আমরা লিমিট বা সীমা এবং অবিচ্ছিন্নতাকে সংজ্ঞায়িত করতে পারি। একটি জটিল সংখ্যা z=x+yi এর অনুবন্ধী জটিল হচ্ছে x-yi':, যেটাকে বা দ্বারা প্রকাশ করা হয়। চিত্র হতে আমরা দেখি হচ্ছে x অক্ষের সাপেক্ষে z প্রতিবিম্ব। তাই এবং উভয়ই বাস্তব সংখ্যা। জটিল সংখ্যা এবং তাদের অনুবন্ধী নিয়ে বেশ কিছু অভেদ বা সূত্র আছে।
শেষের সূত্রটি বিশেষ ভাবে ব্যবহৃত হয় যখন z কে কার্টেসিয়ান কো-অর্ডিনেটে দেওয়া থাকে। জটিল সংখ্যার অপারেশন সমুহের জ্যামিতিক ব্যাখ্যাজটিল সংখ্যার যোগ, গুণ এবং অনুবন্ধীকরণ অপারেশন গুলো সাধারণ জ্যামিতিক ব্যাখ্যা মেনে চলে।
এই জ্যামিতিক ইন্টারপ্রিটেশন এর সাহায্যে জ্যামিতিক সমস্যা কে অ্যালজেব্রিক (এখানে অ্যালজেব্রা শব্দটি প্রচলিত বীজগণিত থেকে একটু আলাদা) সমস্যায় পরিবর্তন করা যায় এবং একই ভাবে অ্যালজেব্রিক সমস্যাকে জ্যামিতিক সমস্যায় হিসেবে দেখা এবং সমাধান করা যায়। যেমন, একটা একটা সম ১৭-ভুজ তৈরির জ্যামিতিক সমস্যা কে অ্যালজেব্রিক্যালি x17 = 1 এই সমীকরণের সাহায্যে বিশ্লেষণ করা সম্ভব। যেখানে সমীকরণের সমাধান গুলো সেই ১৭-ভুজের শীর্ষ বিন্দুগুলো কে প্রতিনিধিত্ব করে। পোলার আকৃতিz = x+iy, এই কার্তেসীয় প্রকাশকে পোলার আকৃতিতেও প্রকাশ করা হয়। z এর আনুসাঙ্গিক পোলার স্থানাঙ্কটি r = |z| ≥ 0, যেটাকে বলা হয় পরম মান বা মডুলাস এবং φ = arg(z), যেটাকে বলা হয় z এর আর্গুমেন্ট অথবা কোণ. যদি r = 0 হয় তখন φ এর যেকোনো মানের জন্যই z একই বিন্দু নির্দেশ করে। এক্ষেত্রে একটা অনন্য প্রকাশ (ইউনিক রিপ্রেজেন্টেশন) পাওয়ার জন্য arg(0) = 0। ধরা হয়। যদি r > 0 হয় তখন আর্গুমেন্ট φ মডুলো 2π; অনন্য(ইউনিক) হয়। অর্থাৎ, যদি যেকোনো দুইটি জটিল সংখ্যার আর্গুমেন্ট এর পার্থক্য 2π এর গুণিতক হয়, তখন তাদেরকে ইকুইভ্যালেন্ট বা সমতুল্য ধরা হয়। অনন্য পাওয়ার জন্য φ এর মানকে অনেক সময় (-π,π], অর্থাৎ, −π < φ ≤ π ব্যবধিতে আবদ্ধ করা হয়। তখন এই আর্গুমেন্ট কে মুখ্য আর্গুমেন্ট বলে। এভাবে কোনো জটিল সংখ্যাকে তার পোলার স্থানাঙ্কে প্রকাশ করলে তাকে বলা পোলার আকৃতি বলা হয়। পোলার আকৃতি থেকে কার্তেসীয় আকৃতিতে রূপান্তরকার্তেসীয় আকৃতি থেকে পোলার আকৃতিতে রূপান্তর(দেখুন আর্গ ফাংশন এবং atan2.) এই ফর্মুলা থেকে প্রাপ্ত φ এর মান (−π, +π] ব্যবধিতে আবদ্ধ। যেখানে y এর ঋণাত্মক মানের জন্য φ ও ঋণাত্মক। যদি শুধু মাত্র [0, 2π) ব্যবধির ধনাত্মক সংখ্যা প্রয়োজন হয়। তখন সূত্র থেকে প্রাপ্ত φ এই এর মানের সাথে 2π': যোগ করে নিতে হবে। পোলার আকৃতির চিহ্নপোলার আকৃতিতে সাধারণত প্রকাশ করা হয় আকারে। এটাকে বলা হয় ত্রিকোণমিতিক আকৃতি, কখনো কখনোcis φ দ্বারা cos φ + i sin φ. বোঝানো হয় তখন লেখা হয় z = r cis φ অয়লার’স ফর্মুলা বা অয়লারের সূত্র ব্যবহার করে জটিল সংখ্যার আরেকটা সুন্দর প্রকাশ হচ্ছে যেটাকে বলা হয় এক্সপনেনশিয়াল আকৃতি পোলার আকৃতিতে গুণ, ভাগ, ঘাত এবং মূল নির্ণয়কার্তেসীয় আকৃতির চেয়ে পোলার আকৃতির এই অপারেশনসমূহ অনেক বেশি সহজ। ত্রিকোণমিতির সূত্রসমূহ ব্যবহার করে দেখানো যায় যেঃ এবং পূর্ণ সংখ্যার ঘাতের জন্য দ্য মরগানের সূত্র অনুসারে আমরা পাই, যেখান থেকে পাওয়া যায়, দুইটি জটিল সংখ্যার যোগ কোনো ভেক্টর সমতলে দুইটি ভেক্টরের যোগের মতোই। আর দুইটি জটিল সংখ্যার গুণকে দেখা যেতে পারে একই সাথে প্রয়োগ করা একটা রোটেশন বা ঘূর্ণন এবং স্ট্রেচিং বা বিবর্ধনের মত। i দিয়ে গুণ করাকে দেখা যেতে পারে ঘড়ির কাঁটার বিপরীত দিকে একটা 90 ডিগ্রি (π/2 রেডিয়ান) ঘূর্ণন হিসাবে। তাই জ্যামিতিকভাবে দেখলে i 2 = −1 সমীকরণের অর্থ হলো দুইটা 90 ডিগ্রি ঘূর্ণন অর্থাৎ একটা 180 ডিগ্রি (π রেডিয়ান) ঘূর্ণন. এমনকি এই হিসাবে (−1) • (−1) = +1 কে জ্যামিতিক ভাবে দেখা যেতে পারে দুইটা 180 ডিগ্রি ঘূর্ণন হিসাবে। যদি c একটি জটিল সংখ্যা হয় এবং n যদি একটা ধনাত্মক পূর্ণ সংখ্যা হয় তখন কোনো জটিল সংখ্যা z যদি zn = c এই সমীকরণ সিদ্ধ করে তাহলে z কে বলা হয় c এর n-তম মূল। যদি c=0 হয় তাহলে তার ঠিক n টি ভিন্ন ভিন্ন n-তম মূল থাকবে। এই n-তম মূল গুো কে পাওয়া যাবে যদি আমরা c কে লিখি হিসাবে যেখানে r > 0 and φ, হচ্ছে বাস্তব সংখ্যা তখন c এর n-মূ মূলসমুহের সেট হচ্ছে যেখানে দ্বারা বাস্তব সংখ্যা r এর প্রচলিত n-তম ধনাত্মক মূল কে বোঝানো হয়। যদি c = 0, হয় তখন c এর n-তম মূল হয় শুধু মাত্র 0। যেখানে n-তম মূল হিসাবে এই 0 এর মাল্টিপ্লিসিটি n ধরা হয়। জটিল সংখ্যা সংক্রান্ত প্রচলিত ধারণা এবং অস্বচ্ছতাজটিল সংখ্যা কতটা জটিল/বাস্তব/অবাস্তব/কাল্পনিক?জটিল সংখ্যার সেটকে সংজ্ঞায়িত করা যায় এভাবে এখান থেকে আমরা সহজেই দেখি যে যখন b=0. ঐতিহাসিকভাবে দেখলে জটিল সংখ্যার থিওরি ডেভেলপড হয়েছে বাস্তব সংখ্যার বেশ পরে। আমরা আগেই দেখেছি এই ধরনের সমীকরণের সমাধান করতে গিয়ে এই জটিল বা কাল্পনিক সংখ্যার উৎপত্তি। যেখানে একটি সমাধান হিসেবে কে ধরা হয় যেন হয়। এই হলো আমাদের পরিচিত কাল্পনিক একক যার সাহায্যে গণিতের থিওরিসমূহ বাস্তব সংখ্যার সেট থেকে জটিল সংখ্যার সেটে উন্নীত হয়। অস্বচ্ছতার সূচনাজটিল সংখ্যা সম্পর্কে প্রথম অস্বচ্ছতার সূচনা হয় এর নামকরণ থেকে। ইংরেজি বা বাংলা, সব ভাষায় এই সংখ্যার পরিভাষা হচ্ছে ‘কম্পলেক্স’, ‘ইমাজিনারি’, ‘অবাস্তব’, ‘কাল্পনিক’ এবং সর্বোপরি ‘জটিল’ সংখ্যা। নাম শুনেই শিক্ষার্থীদের মনে সন্দেহপ্রবণতার সৃষ্টি হওয়া স্বাভাবিক। একজন শিক্ষার্থী যখন প্রথম যোগ বা বিয়োগ শেখে তখন পরিচিত হয় ধনাত্মক পূর্ণ সংখ্যার সাথে। তখনও পর্যন্ত সে জানে যে ছোট সংখ্যা থেকে বড় সংখ্যা বিয়োগ করা সম্ভব নয়। তার সামনে উদাহরণ হিসেবে দেখানো হয় একটি ব্যাগে বলের সংখ্যার, বা একছড়া কলায় কলার সংখ্যা। এরপর যখন সে পাটিগণিত শেখে, তখন পরিচিত হয় ভগ্নাংশের সাথে। তখন সে এই ভগ্নাংশ বা দশমিক সংখ্যা কে কল্পনা করতে পারে অতিক্রান্ত দূরত্ব বা অন্যান্য উদাহরণ দিয়ে। যেমন, হয়তো একজন লোক ১ ১/২ কিমি. দূরত্ব অতিক্রম করেছে। এর পর বীজগণিত শেখার সময় যখন তার প্রথম পরিচয় হয় ঋণাত্মক সংখ্যার সাথে। এই সংখ্যাকে সে প্রথমে একটু সন্দেহপ্রবণ দৃষ্টিতে দেখে। কারণে এই সংখ্যার বাস্তব উদাহরণ সৃষ্টি করা সহজসাধ্য নয়। তার পরে এক সময় সে হয়ত এটা বুঝতে সেখে ঋণ এর ধারণা থেকে। যেমন, আমার কাছে কেউ 5 টাকা পায়, সেসময় আমার কাছে আর কোনো টাকা না থাকার অর্থ হলো ওই মুহূর্তে আমি -5 টাকার মালিক। কিন্তু এরপর উচ্চতর গণিত শিখতে গিয়ে সে যখন পরিচিত হয় জটিল সংখ্যার সাথে, তখন তার পক্ষে এরকম বাস্তব উদাহরণ খুঁজে বের করা মুশকিল হয়ে যায়। কিছু বহুপদীর মূল এর সাহায্যে উদাহরণ দেওয়া হলেও সেগুলো সন্তোষজনক মনে হয় না। উপরন্তু সংখ্যাটির নাম ‘জটিল সংখ্যা’ যার আবার একটা ‘কাল্পনিক’ অথবা ‘অবাস্তব’ অংশ আছে। নামকরণ থেকে প্রাপ্ত এই বিভ্রান্তিকর তথ্যের জন্য তার পক্ষে জটিল সংখ্যাকে একটা সংখ্যা হিসেবে ‘ইমেজ’ বা কল্পনা করা কঠিন (বেশিরভা তাহলে জটিল সংখ্যা কি?আসলে সকল সংখ্যাই কাল্পনিক!! আমাদের অতিপরিচিত সংখ্যা 1,2,3,... -1 বা এরা সবই আমাদের মনের কল্পনা [৫]! এসব সংখ্যাকে আমরা কল্পনা করে নিয়েছি আমাদের বাস্তব জীবনের বিভিন্ন সমস্যা সমাধানের জন্য এবং পর্যবেক্ষণের সাহায্যে নিশ্চিত হয়েছি যে আদর্শ অবস্থায় আমাদের গাণিতিক সমাধান গুলো ব্যবহারিক সমস্যার সমাধান হিসেবেও কাজ করে। এ বিষয়ে মনে করা যেতে পারে যে, সব ধরনের গণিতের সূচনাই হয় কিছু ‘স্বীকার্যের’ উপর ভিত্তি করে। যে স্বীকার্যগুলো আমরা প্রমাণ ছাড়াই মেনে নিই(আসলে প্রমাণ সম্ভব নয়)। শুধু এই ‘পর্যবেক্ষণ’ থেকে যে তারা বাস্তব সমস্যার সমাধানে কার্যকরী এবং স্ববিরোধী নয়। আমাদের পরিচিত বাস্তব সংখ্যা গুলিকে যেমন আমরা ব্যবহার করি বীজগণিত/পাটিগণিতের সাহায্যে আমাদের বাস্তব জগৎ এর সমস্যা সমাধান এর জন্য। তেমনি আমরা জটিল সংখ্যাকেও ব্যবহার করি কোয়ান্টাম মেকানিক্স, কোয়ান্টাম পদার্থবিজ্ঞান(দুইটি সম্পর্কিত, কিন্তু আলাদা বিষয়), কোয়ান্টাম ইলেক্ট্রো ডাইনামিক্স ছাড়াও উচ্চতর গণিত বা বিজ্ঞানের এমন হাজার ক্ষেত্রে, যেখানে গাণিতিক সমীকরণ বা রাশিগুলো আমাদের বাস্তব জগৎ এর বিভিন্ন ঘটনা, পরিমাপ, এবং রাশিমালা নির্দেশ করে। আসলে বীজগণিত শেখার শুরুতে একজন শিক্ষার্থী যেমন প্রশ্ন করে, " এই সমীকরণের বাস্তব অর্থ কি? a এর সাথে b কে যোগ করে কি লাভ? a বা b কি কোনো সংখ্যা হতে পারে?” তেমনই জটিল সংখ্যা নাম শুনে এবং আর এ ধরনের (তখন পর্যন্ত তার গাণিতিক ধারণা অনুযায়ী) প্রথাবিবিরুদ্ধ সমীকরণ দেখে এবং এদের নাম “জটিল”, “অবাস্তব” এসব দেখে সে নিজেও এটাকে “অবাস্তব” ভাবতে শুরু করে। জটিল সংখ্যা শিক্ষার প্রাথমিক বাধা এটাই[৫]। অতএব, জটিল সংখ্যা ঠিক ততটাই জটিল বা কাল্পনিক বা বাস্তব যতটা জটিল বা কাল্পনিক বা বাস্তব অন্য আর সব সংখ্যা। তাই জটিল সংখ্যা, কাল্পনিক অংশ এসব নাম কে শাব্দিক অর্থে না নিয়ে জটিল সংখ্যা সম্পর্কে যে সঠিক চিত্রটা আমরা পেতে পারি তা হোল। জটিল সংখ্যাও আরেক ধরনের সংখ্যা, যেটা আর সব সংখ্যার মতোই, শুধু তাদের হিসাবের নিয়ম একটু আলাদা। অনেক গুরুত্বপূর্ণ ও বাস্তব সমস্যা সমাধানের জন্য জটিল সংখ্যা অপরিহার্য অর্থাৎ, জটিল সংখ্যা অবাস্তব সংখ্যা নয়।(আক্ষরিক অর্থে) একটি প্রচলিত বিভ্রান্তিআমরা যখন জটিল সংখ্যার কাল্পনিক একক কে হিসাবে দেখি তখন সহজেই একটা সমীকরণে পৌছতে পারি। এই সমীকরণ ও শিক্ষার্থীদের কাছে জটিল সংখ্যাকে জটিল বা অবাস্তব মনে হবার আরেকটা কারণ। কিন্তু এর ব্যাখ্যা হচ্ছে। অপারেশন টি শুধু মাত্র তখনই ডিস্ট্রিবিউটিভ যখন a এবং b ধনাত্মক বাস্তব সংখ্যা। তাই সমীকরণটি অশুদ্ধ। এই ভুল থেকে বাঁচার জন্য গাউস কর্তৃক প্রস্তাবিত পন্থা হচ্ছে, বর্গমূল এর মধ্যে ঋনাত্মক সংখ্যা এসে গেলেই প্রথমেই সেটাকে আকারে লিখে নেওয়া যাতে পরবর্তীতে বর্গমূল চিহ্নের মধ্যে ঋনাত্মক চিহ্নের কোনো অপারেশন না হয়। বাস্তব সংখ্যার কাল্পনিক ঘাত: অয়লারের তত্ত্বকোনো বাস্তব সংখ্যার কাল্পনিক ঘাত অয়লার এর তত্ত্ব অনুযায়ী বের করা যায়। তত্ত্ব টি নিম্নরূপ
যেমনঃ প্রয়োগ"বাস্তব" এবং "কাল্পনিক" শব্দ দুটি অর্থবহ ছিল যখন জটিল সংখ্যাকে শুধু বাস্তব সংখ্যা সংক্রান্ত হিসাবে সাহায্যকারী ধারণা হিসাবে ব্যবহার করা হতো। যেখানে শুধু "বাস্তব অংশ" আক্ষরিক অর্থে "বাস্তব জগৎ"-এর প্রতিনিধিত্ব করত। পরবর্তীকালে, বিশেষ করে কোয়ান্টাম বলবিজ্ঞানের আবিষ্কারের পরে দেখা যায় যে বাস্তব সংখ্যার প্রতি প্রকৃতির কোনো অতিরিক্ত প্রীতি নেই। বরং অনেক "বাস্তব" ঘটনাই গাণিতিকভাবে বর্ণনার সময় জটিল সংখ্যা অত্যাবশ্যক হয়ে পড়ে। ফলে জটিল সংখ্যার সেই "কাল্পনিক অংশ" "বাস্তব অংশের" মতই ভৌত বাস্তবতা নিয়ে হাজির হয়। নিয়ন্ত্রণ তত্ত্বনিয়ন্ত্রণ তত্ত্বে প্রায়ই ভৌত ব্যবস্থাকে লাপ্লাস রূপান্তরের মাধ্যমে সময় ডোমেইন থেকে ফ্রিকোএন্সি ডোমেন-এ নিয়ে যাওয়া হয়। এর পর সেই ব্যবস্থার পোল এবং জিরো কে জটিল সমতলে বিশ্লেষণ করা হয়। রুট লোকাস, নাইকুইস্ট প্লট এবং নিকোল প্লট এইসব বিশ্লেষণী পদ্ধতিতে জটিল সমতলকে ব্যবহার করা হয়। যেমন, রুট লোকাস পদ্ধতিতে পোল এবং জিরো সমুহ জটিল সমতলের বাম অর্ধতল নাকি ডান অর্ধতলে অবস্থিত তা বিশেষ ভাবে গুরুত্বপূর্ণ( অর্থাৎ, রুট এর বাস্তব অংশ শুন্য অপেক্ষা বড় নাকি ছোট)। যদি কোন সিস্টেমের পোল সমুহ,
কোন সিস্টেমের জিরো যদি ডান অর্ধতলে থাকে তাহলে সিস্টেমটি ননমিনিমাম ফেজ সিস্টেম। সিগন্যাল বিশ্লেষণসিগন্যাল বিশ্লেষণ এবং অন্য আরও কিছু ক্ষেত্রে জটিল সংখ্যাকে পর্যায়বৃত্ত ভাবে পরিবর্তনশীল সিগন্যাল এর গাণিতিক প্রকাশে ব্যবহার করা হয়। সাইন এবং কোসাইন দ্বারা প্রকাশিত কোনো বাস্তব ফাংশন যার প্রকাশে জটিল ফাংশন ব্যবহৃত হয় এবং সেখানে জটিল ফাংশনের বাস্তব অংশ সেই সিস্টেমের ভৌত পরিমাপ সমূহ প্রকাশ করে। যেমন নির্দিষ্ট কম্পাঙ্কের একটা সাইন তরঙ্গের জটিল প্রকাশে পরম মান |z| দ্বারা বিস্তার এবং আর্গুমেন্ট arg(z) দ্বারা ফেজ বা দশা নির্দেশিত হয়। যেখানে z হচ্ছে সেই সাইন তরঙ্গের জটিল সংখ্যায় প্রকাশিত রূপ। ফুরিয়ার বিশ্লেষণে সময় কোনো সিগন্যালকে (যেটা বাস্তব সংখ্যার একটি ফাংশন আকারে প্রকাশিত) অনেকগুলো পর্যায়বৃত্ত ফাংশনের সমষ্টি আকারে প্রকাশ করতে জটিল সংখ্যার ফাংশন ব্যবহৃত হয়। এক্ষেত্রে ব্যবহৃত পর্যায়বৃত্ত ফাংশনগুলি এই, আকারের। ω দ্বারা কৌণিক গতি বোঝানো হয় এবং জটিল সংখ্যা z, পূর্বে বর্ণিত পদ্ধতিতে একই সাথে বিস্তার এবং দশা উভয়কেই ধারণ করে। তড়িৎ প্রকৌশলে পরিবর্তনশীল বিভব এবং তড়িৎ প্রবাহের বিশ্লেষণে ফুরিয়ার ট্রান্সফর্ম ব্যবহৃত হয়। রোধ, ধারক এবং আবেশক কে জটিল সংখ্যার সাহায্যে কম্পাঙ্কনির্ভর একটা একীভূত রাশিতে প্রকাশ করা হয়। যাকে আমরা বলি ইম্পিডেন্স. (যেহেতু i দ্বারা পরিবর্তী প্রবাহ প্রকাশ করে সেহেতু তড়িৎ প্রকৌশলি এবং পদার্থ বিজ্ঞানীগণ অনেক সময় কাল্পনিক একক i কে j লিখে প্রকাশ করে থাকে)। ইম্পিডেন্সের সাহায্যে পরিবর্তী প্রবাহ এবং বিভবের বিশ্লেষণে ব্যবহৃত এই গাণিতিক প্রক্রিয়াকে বলা হয় ফেজর ক্যালকুল্যাস। এই পদ্ধতিকে সম্প্রসারিত করে ডিজিটাল সিগন্যাল প্রসেসিং এবং ডিজিটাল ইমেজ প্রসেসিং এ প্রয়োগ করা হয়। যেখানে সিগন্যাল ট্রান্সমিট, কম্প্রেস এবং পুনরুদ্ধারে ফুরিয়ার বিশ্লেষণে ব্যবহৃত হয়। ইমপ্রোপ্রার ইন্টিগ্রালফলিত গণিতে অনেক বাস্তব সংখ্যার ফাংশনের ইম্প্রোপার ইন্টিগ্রাল বের করার জন্য জটিল সংখ্যার ফাংশন ব্যবহৃত হয়। এ ধরনের বিভিন্ন পদ্ধতি রয়েছে। (দেখুন কন্টুর ইন্টিগ্রেশন) কোয়ান্টাম মেকানিক্সজটিল সংখ্যার ফিল্ড কোয়ান্টাম বলবিজ্ঞানের গাণিতিক সূত্রায়নের সাথে ওতপ্রোত ভাবে জড়িত। যেখানে সাধারণত জটিল সংখ্যা ভিত্তিক হিলবার্ট স্পেস কে অন্তর্নিহিত গাণিতিক সংগঠন হিসাবে ব্যবহার করা হয়। কোয়ান্টাম মেকানিক্সের মূল ভিত্তি- তথা শ্রোডিঙার সমীকরণ এবং হাইজেনবার্গের মেট্রিক্স মেকানিক্স- জটিল সংখ্যার সাহায্যে গঠিত। আপেক্ষিকতাবিশেষ আপেক্ষিকতা এবং সাধারণ আপেক্ষিকতাতে স্পেস-টাইম বা স্থান-কালএর মেট্রিকসংক্রান্ত কিছু সমীকরণ অনেক সরল হয়ে যায় যদি সময় কে কাল্পনিক সংখ্যার চলক হিসাবে প্রকাশ করা হয় (ক্লাসিক্যাল রিলেটিভিটিতে এধরনের ব্যবহার তেমন না থকলেও কোয়ান্টাম ফিল্ড থিওরিতে এটা অত্যাবশ্যক)। আপেক্ষিকতায় ব্যবহৃত স্পিনর (সেটা টেন্সর এর একটা সাধারণীকৃত রূপ) এর জন্যেও জটিল সংখ্যা অত্যাবশ্যক। ফলিত গণিতডিফারেন্সিয়াল ইকুয়েশনের সমাধানের সময় সাধারণত, প্রথমে ক্যারেক্ট্যারিস্টিক ইকুয়েশনের জটিল মূল গুলো নির্ণয় এবং এর পরে পুরো সিস্টেম কে f(t) = ert আকারের বেস ফাংশনের সাপেক্ষে সমাধান করা হয়। ফ্লুইড ডাইনামিক্সফ্লুইড ডাইনামিক্সে জটিল সংখ্যার ফাংশন দ্বারা দ্বিমাত্রিক পোটেনশিয়াল ফ্লো প্রকাশ করা হয়। ফ্র্যাক্টালকিছু কিছু ফ্র্যাক্টাল জটিল সমতলে প্লট করা হয়। যেমন, ম্যান্ডেলব্রট সেট এবং জুলিয়া সেট ইত্যাদি। পাদটীকা
তথ্যসূত্রগাণিতিক তথ্যসূত্র
ঐতিহাসিক তথ্যসূত্র
অতিরিক্ত তথ্যের জন্য দেখুন
পরিভাষা(পড়বার সূত্র: English term (বাংলা লিপিতে ইংরেজি শব্দের ধ্বনিভিত্তিক উচ্চারণ) - বাংলা পরিভাষা)
বহিঃসংযোগ সমূহ
|