Funció característica (teoria de la probabilitat) En teoria de la probabilitat, la funció característica d'una variable aleatòria real és una eina matemàtica que proporciona informació completa sobre la distribució de probabilitat de la variable aleatòria i sovint en facilita l'estudi. A més, amb les funcions característiques es disposa, gràcies al teorema de continuïtat de Lévy, d'un mètode senzill i potent per estudiar la convergència en distribució d'una successió de variables aleatòries.
Donada una variable aleatòria real definida sobre un espai de probabilitat , la seva funció característica és la funció
(és a dir de valors complexos)
definida, per a tot real t, per la relació següent (on , i denota l'operador esperança):
Expressions de la funció característica
Expressions integrals generals
Per definició de :
Denotant per la distribució de probabilitat de la variable aleatòria X:
- (segons el teorema de la mesura imatge)
Remarques:
- la definició (1) té sentit perquè per a tot real t, la variable aleatòria complexa
- és fitada (té mòdul 1) i, per tant, és integrable respecte a la mesura de probabilitat ;
- l'equació (2) significa que la funció característica d'una variable aleatòria real X és la transformada de Fourier de la seva distribució de probabilitat , mesura de probabilitat sobre l'espai mesurable (o probabilitzable) , on és la sigma-àlgebra de Borel de
Casos particulars importants
- Quan X és discreta, amb valors tals que per a tot k, aleshores:
- (suma finita o sèrie absolutament convergent)
- (integral de Lebesgue; en els casos usuals coincideix amb la integral de Riemann)
Propietats elementals
La funció característica d'una variable aleatòria real X:
- (on és el conjugat del nombre complex z)
- i en particular : ;
- per tant si i tenen la mateixa distribució (dita simètrica), la funció és parella amb valors reals
(la tercera propietat es dedueix del teorema de convergència dominada; les altres són immediates)
Demostració de la continuïtat uniforme
Per linealitat de l'esperança :
i per tant:
- ;
- .
Ara bé:
- i a més
Aleshores pel teorema de convergència dominada (atès que la variable aleatòria constant amb valor 2 és integrable):
- .
Com que la funció majorant tendeix cap a 0 i no depén de t, això acaba la demostració.
Exemples clàssics
Distribució degenerada
Si la variable aleatòria X segueix la distribució degenerada de valor (és a dir: ; X és constant quasi segurament) aleshores:
Distribució binomial
Si la variable aleatòria X segueix la distribució binomial (on ) aleshores:
d'on es dedueix (fórmula del binomi de Newton):
Distribució de Bernoulli
En particular, si la variable aleatòria X segueix la distribució de Bernoulli (on ) aleshores:
Distribució geomètrica
Si la variable aleatòria X segueix la distribució geomètrica (on ) aleshores:
Distribució de Poisson
Si la variable aleatòria X segueix la distribució de Poisson (on ) aleshores:
Si la variable aleatòria X segueix la distribució uniforme contínua (on i a < b) aleshores:
- si , i .
En particular, si X segueix la distribució (on ) aleshores:
- si , i .
Distribució exponencial
Si la variable aleatòria X segueix la distribució exponencial (on ) aleshores:
Distribució normal estàndard
Si la variable aleatòria X segueix la distribució normal estàndard aleshores:
Prova
L'integrand és derivable respecte a t, i la funció és integrable sobre . Així, doncs, es pot derivar sota el signe integral; la funció és derivable i compleix la relació següent:
- ;
en integrar per parts:
- .
Per tant, en resoldre aquesta equació diferencial:
Per fi : , Q.E.D.
(també es pot utilitzar el teorema de Cauchy per a funcions holomorfes)
Distribució de Laplace centrada en el 0
Si la variable X segueix la distribució de Laplace centrada en 0,
, amb aleshores:
Prova
on a la igualtat (i) hem integrat per parts dues vegades.
Distribució de Cauchy simètrica
Si la variable aleatòria X segueix la distribució de Cauchy simètrica (on ) aleshores:
Per demostrar-ho, es pot utilitzar el teorema dels residus (anàlisi complexa).
Prova
La funció (d'una variable complexa) és holomorfa en l'obert (els dos punts singulars són pols simples de g).
Per a tot real R tal que R > 0, sigui el semidisc compacte
la vora del qual és , on és el semicercle .
Suposant , el pol és l'únic punt singular de la funció g en ; per tant, segons el teorema dels residus, si :
- .
Si , aleshores
- quan .
En efecte : si i ,
- ,
i per tant, si :
- .
Per a tot real positiu t, passant al límit quan , s'obté:
- .
Altrament dit:
- .
Com que la distribució estudiada és simètrica, la funció és parella, i se'n dedueix:
- , Q.E.D.
Alternativament, Cramer [1] proposa la següent demostració utilitzant que la funció característica d'una distribució de Laplace centrada en el 0 és la densitat d'una distribució de Cauchy simètrica (a part d'una constant multiplicativa) i la fórmula d'inversió per a funcions característiques integrables.
Concretament, si , hem calculat que la seva funció característica és
Aquesta funció característica és integrable:
Aleshores, per la fórmula d'inversió per a funcions característiques integrables (vegeu més avall les fórmules d'inversió), la funció de densitat de , , val:
D'aquí, O, intercanviant els noms de les variables,
Però l'expressió de la dreta és exactament la funció característica de la variable aleatòria amb distribució de Cauchy avaluada en el punt , . Per tant,
Aplicacions
Cas de la distribució normal general
Sigui una variable aleatòria X amb distribució normal (on ).
Aleshores:
- .
Prova
En efecte, la variable aleatòria
segueix la distribució normal estàndard . Per tant, (vegeu supra):
- .
Com que , se'n dedueix que:
- .
Cas de la distribució de Cauchy general
Sigui una variable aleatòria X amb distribució de Cauchy (on ).
Aleshores:
- .
Prova
En efecte la variable aleatòria
segueix la distribució de Cauchy simètrica . Per tant, (vegeu supra):
- .
Com que , se'n dedueix que:
- .
Perquè la funció característica és anomenada així
Com el seu nom ho indica, la funció característica d'una variable aleatòria (real) en caracteritza la distribució de probabilitat: dues variables aleatòries segueixen la mateixa distribució si i només si tenen la mateixa funció característica: és el teorema d'unicitat (vegeu infra).
Per aquesta raó, la funció característica d'una variable aleatòria X també és anomenada funció característica de la distribució d'X. Per exemple, es pot parlar de la funció característica de la distribució normal.
Fórmules d'inversió
Fórmula d'inversió general. Donada una variable aleatòria real X, es denota per la seva funció de distribució. Per a tot parell de punts de continuïtat de es compleix la relació següent:
Això és una variant probabilista del teorema d'inversió de la transformació de Fourier.
Quan la funció característica és integrable no cal fer el pas límit en la fórmula d'inversió i, a més, la variable aleatòria té funció de densitat que s'obté com la transformada de Fourier de la funció característica. Concretament,
Fórmula de inversió per a funcions característiques integrables. Sigui una variable aleatòria real amb funció característica tal que Aleshores té funció de densitat donada per A més és contínua i afitada.
Comentaris.
1. Sigui X una variable aleatòria amb distribució normal estàndard . Segons hem vist, la seva funció característica és , que és integrable ja que Per tant, per la fórmula d'inversió,
Aleshores, si definim la transformada de Fourier amb la constant normalitzadora ,[2] tindrem que la funció és invariant per la transformada de Fourier:
2. Hi ha moltes funcions de densitat que no són contínues o no són afitades, i llavors la seva funció característica no és integrable. Per exemple, la distribució exponencial de paràmetre , , té funció de densitat
Aquesta funció té una discontinuïtat en el punt 0. La seva funció característica és que té mòdul Llavors,
Teorema d'unicitat
El teorema d'inversió permet reconstruir (almenys en teoria) la funció de distribució d'una variable aleatòria a partir de la seva funció característica. Una conseqüència és l'important teorema d'unicitat:
Dues variables aleatòries reals són idènticament distribuïdes si i només si tenen la mateixa funció característica.
Prova del teorema d'unicitat
Es recorda que les funcions de distribució són creixents, contínues per la dreta en tot punt de , tendeixen a 0 en i a 1 en (però no són necessàriament contínues en : en particular, les funcions de distribució de les variables aleatòries discretes no ho són).
El teorema de la mesura imatge (vegeu aquí la relació (2)) té com a conseqüència immediata que si dues variables aleatòries X i Y són idènticament distribuïdes (és a dir ), aleshores .
Recíprocament, siguin dues variables aleatòries X i Y tals que . Aleshores, segons el teorema d'inversió, per a tot parell de punts de continuïtat de i es compleix la relació següent:
Ara bé, les funcions , són creixents i, per tant, el conjunt dels punts de discontinuïtat de cadascuna és finit o numerable; per consegüent:
- existeix una successió de punts de continuïtat de i tal que ;
- per a tot real x existeix una successió de punts de continuïtat de i que convergeix cap a x per la dreta.
Per a tot parell d'enters naturals:
Passant al límit quan , com que , se'n dedueix:
Finalment, passant al límit quan , com que per la dreta i que , són contínues per la dreta en tot punt:
- ; altrament dit: .
Se sap que la igualtat implica que X i Y tenen la mateixa distribució; això acaba la demostració.
Utilització pràctica
El més sovint, el teorema d'unicitat s'utilitza de la manera següent per determinar la distribució de probabilitat d'una variable aleatòria real X: es calcula la funció característica i es reconeix la funció característica d'una distribució clàssica que és, per tant, la distribució d'X (per exemple, vegeu infra la prova de l'estabilitat d'algunes distribucions de probabilitat).
Funció característica de la suma de variables aleatòries independents
Suma de dues variables aleatòries independents
Donades dues variables aleatòries reals independents X i Y (definides sobre el mateix espai de probabilitat), es compleix la relació següent:
- .
En efecte,
- .
Atès que X i Y són independents, també ho són, per a tot real t, les variables aleatòries i ; per tant:
- .
Remarca: el recíproc és fals. Existeixen variables aleatòries no independents les funcions característiques de les quals compleixen aquesta relació. Heus aquí un exemple ben conegut: donada una variable aleatòria X amb distribució de Cauchy simètrica :
Però és clar que X i X no són independents.
Generalització
Donades n variables aleatòries reals independents (definides sobre el mateix espai de probabilitat), es compleix la relació següent:
- (per consegüent, el producte de funcions característiques també és una funció característica).
Se sap que la transformada de Fourier d'un producte de convolució és el producte ordinari de les transformades de Fourier.
Tenint en compte el teorema d'unicitat, la relació precedent s'interpreta així: si les variables aleatòries són independents, aleshores:
- : la distribució de probabilitat de la suma és el producte de convolució de les distribucions dels termes.
Per determinar la distribució de la suma, els dos punts de vista (producte de convolució de les distribucions de probabilitat, producte ordinari de les funcions característiques) són matemàticament equivalents. Tanmateix, el mètode de les funcions característiques és generalment més simple d'utilitzar.
Aplicació: estabilitat d'algunes distribucions de probabilitat
Siguin n variables aleatòries reals independents .
- si per a tot k, segueix la distribució binomial , aleshores segueix la distribució binomial
- si per a tot k, segueix la distribució de Poisson , aleshores segueix la distribució de Poisson
- si per a tot k, segueix la distribució normal , aleshores segueix la distribució normal
- si per a tot k, segueix la distribució de Cauchy , aleshores segueix la distribució de Cauchy
Prova de l'estabilitat
Provem (per exemple) la segona afirmació (la prova de les altres és anàloga):
- on .
Es reconeix la funció característica de la distribució de Poisson ; segons el teorema d'unicitat, la variable aleatòria segueix aquesta distribució.
Funció característica i moments
Sigui una variable aleatòria real X.
Teorema directe
Si el moment d'ordre m d'X existeix (finit), aleshores:
- la funció característica és de classe en
- , i per tant:
- , on .
Recíproc (parcial)
Si és m vegades derivable en el punt 0, aleshores:
- per a tot natural k tal que el moment d'ordre k d'X existeix i:
En particular, si és infinitament derivable en el punt 0, aleshores tots els moments d'X existeixen.
Exemple
Si la variable aleatòria X segueix la distribució de Poisson , la seva funció característica és infinitament derivable en : tots els moments d'X existeixen. Es comprova fàcilment que:
- .
Per tant:
- , , i
(també es poden calcular directament com a sumes de sèries convergents).
Teorema de continuïtat de Lévy
Aquest teorema permet estudiar la convergència en distribució de les successions de variables aleatòries per mitjà de la convergència puntual de les seves funcions característiques.
Enunciat
Una successió de variables aleatòries reals convergeix en distribució cap a una variable aleatòria real X si i només si:
- quan , on
- és una funció contínua en el punt 0.
En aquest cas, és la funció característica d'X.
Versió més simple
Una successió de variables aleatòries reals convergeix en distribució cap a una variable aleatòria real X si i només si:
- quan .
La segona versió exigeix que sigui coneguda per endavant la distribució límit.
Utilitzacions
Heus aquí unes quantes aplicacions clàssiques del teorema de continuïtat de Lévy.
Teorema del límit central
Una aplicació clàssica del teorema de continuïtat de Lévy és la prova del teorema del límit central.
Teorema de convergència de Poisson
Una segona aplicació clàssica és la prova del teorema de convergència de Poisson:
- Sigui una successió real tal que (on ) i per a tot n, .
- Si per a tot n, la variable aleatòria segueix la distribució binomial , aleshores la successió convergeix en distribució cap a una variable aleatòria X amb distribució .
Prova
En efecte:
- , on
- quan ; per tant:
- quan ;
- tenint en compte el teorema de continuïtat de Lévy, això acaba la prova.
Llei feble dels grans nombres
Una tercera aplicació clàssica és la prova de la llei feble dels grans nombres per a variables aleatòries integrables (és a dir amb esperança finita) i independents. S'enuncia així:
- Donada una successió de variables aleatòries reals (definides sobre el mateix espai de probabilitat) independents i idènticament distribuïdes (abreujadament i.i.d), amb esperança finita, es posa: .
- Si es defineix per a tot n:
- , on ,
- aleshores la successió convergeix en distribució cap a la constant .
Prova
En efecte:
- les variables aleatòries tenen la mateixa funció característica que denotem per (sense índex). Com que per a tot n, (moment d'ordre 1) existeix:
- , on quan .
- Per independència:
- .
- Aleshores:
- ,
- altrament dit:
- i se'n dedueix:
- quan .
- La funció és la funció característica de la variable aleatòria constant amb valor ; això acaba la prova si es té en compte el teorema de continuïtat de Lévy.
Remarca: se sap que la convergència en distribució cap a una constant equival a la convergència en probabilitat cap a la mateixa constant.
Cas multidimensional
Sigui un vector aleatori de dimensió , és a dir, una aplicació tal que cada component és una variable aleatòria. La seva funció característica és l'aplicació definida per Amb notació vectorial, si designem per el producte escalar ordinari de dos vectors , Quan no hi hagi confusió, escriurem en lloc de .
Càlcul de la funció característica
Cas discret
Sigui un vector aleatori discret amb funció de probabilitat . Aleshores la seva funció característica és
Cas absolutament continu
Si és un vector aleatori amb funció de densitat . Aleshores la seva funció característica és
Propietats
Les propietats de les funcions característiques unidimensionals es trasllades al cas vectorial. Les següents propietats es troben a Sato; per a les demostracions completes vegeu Cuppens.
- , on .
- .
- la funció és uniformement contínua.
- La funció és hermítica:
- En aquesta propietat és convenient escriure tots els vectors en columna, tal com és habitual en Àlgebra lineal. Designarem per la transposada d'una matriu (o vector) . Sigui un vector aleatori, un vector d'escalars i una matriu . DefinimAleshores,
- Teorema d'inversió. Necessitem algunes notacions: Recordem que un conjunt , on és la -àlgebra de Borel sobre , es diu que és un conjunt de continuïtat de (la distribució de) si , on és la frontera de . Donats dos vectors, escriurem (respectivament ) si (respectivament ). Si designarem per el conjunt ; de manera anàloga es defineix . Si és un conjunt de continuïtat de , aleshores
- Teorema d'unicitat. si i són dos vectors aleatoris, amb funcions característiques i respectivament, tals quealeshores i tenen la mateixa distribució. Evidentment, el recíproc també és cert.
- Funció característica i independència. Les variables aleatòries són independents si i només si
Més generalment, els vectors aleatoris -dimensionals són independents si i només si
- Funció característica i suma de vectors aleatoris independents. Siguin vectors aleatoris -dimensionals independents i posemAleshores
- Funció característica i moments. Recordem que es diu que un vector aleatori té moment d'ordre , on , si , i, en aquest cas, es defineix el moment d'ordre per
Si el vector aleatori compleix que , on és la norma d'un vector , aleshores la funció característica és de classe i per a qualsevol , amb ,Recíprocament, si la funció característica és de classe per a parell, aleshores el vector té moments d'ordre per qualsevol , amb .
- Funció característica i convergència en distribució. Sigui una successió de vectors aleatoris -dimensionals. Designem per la funció característica del vector . Aleshores la successió convergeix en distribució a un vector aleatori si i només si on és una funció contínua en . En aquest cas, és la funció característica de
Exemples
Distribució multinomial
Considerem un experiment que pot tenir resultats diferents, que designarem per , amb probabilitats , . Fem repeticions independents i denotem per el nombre de vegades que obtenim el resultat , per el nombre de vegades que obtenim el resultat , i així successivament. Aleshores la probabilitat d'obtenir vegades el resultat , vegades el resultat , etc. amb és
Es diu que el vector segueix una distribució multinomial[5][6] de paràmetres , i s'escriu . Cal notar que cada component té una distribució binomial de paràmetres i , . De fet, una distribució multinomial és una extensió de la distribució binomial quan hi ha més de dos resultats possibles. La funció característica del vector és
Càcul de la funció característica
Per a , on a l'última igualtat hem aplicat la fórmula
on la suma es fa sobre totes les - ples tals que .
A partir d'aquesta funció característica podem calcular de manera senzilla :
d'on
Distribució normal multivariant
Vegeu Anderson.[7] En aquest exemple escriurem tots els vectors en columna. Un vector aleatori es diu que segueix una distribució normal -dimensional on és la matriu identitat, si té funció de densitat Cal notar que les components del vector són independents, cadascuna amb una distribució normal estàndard . La seva funció característica és
Càcul de la funció característica
Les variables són independents i totes tenen distribució . En efecte, per exemple, la funció de densitat marginal de és Per tant, d'una banda . I de l'altra, tenim que
d'on són independents. Aleshores, utilitzant la relació entre variables independents i funcions característiques i l'expressió de la funció característica de la distribució normal que hem calculat abans, tenim que per qualsevol ,
Sigui una matriu definida positiva[8] i un vector d'escalars. La matriu té una matriu arrel quadrada definida positiva (i per tant simètrica) única,[9] que compleix. Definim Per la fórmula que hem vist abans, la funció característica de serà, per , D'altra banda, atès que d'onI per les propietats de la matriu de variàncies-covariàncies, la matriu de variàncies-covariàncies del vector serà: S'escriu . Utilitzant la fórmula del canvi de variables per a vectors aleatoris amb densitat, podem calcular la funció de densitat de , que és: on és el determinant de la matriu .
En el cas que hem vist fins ara, la matriu de variàncies-covariàncies del vector normal multidimensional era no singular, és a dir, . Utilitzant la funció característica es pot definir un vector normal multidimensional de manera que inclogui el cas que la matriu de variàncies covariàncies sigui singular i que s'anomena vector normal multidimensional singular o degenerat ;[10][11] aquest vector està concentrat en una varietat lineal (estricte) de i no té funció de densitat. Específicament, sigui una matriu definida no negativa i un vector d'escalars; un vector aleatori , es diu que és normal multidimensional, i s'escriu si té funció característica Quan es diu que és un vector normal multidimensional singular; en aquest cas, també el vector d'esperances és i la matriu de variàncies és , però si el rang de és , aleshores la distribució de està concentrada en una varietat lineal de dimensió i, per tant, no té funció de densitat.
Referències
- ↑ Cramer, Harald. Métodos matemáticos de Estadística. 4a.. Madrid: Aguilar, 1970, p. 114 i 283.
- ↑ {{{títol}}}. 2a edició. títol=Real analysis|editorial=Addison-Wesley, Advanced Book Program/World Science Division|data=1983|lloc=Reading, Mass|isbn=978-0-201-14179-5|nom=Serge|cognom=Lang|pàgines=363}}
- ↑ Johnson, N. L.; Kotz, S.; Balakrihsnan, N. Discrete Multivariate Distributions. Nova York: Wiley, 1997. ISBN 0-471-12844-1.
- ↑ Forbes, C.; Evans, M.; Hastings, N.; Peacock, B. Statistical distributions.. 4th ed.. Oxford: Wiley-Blackwell, 2010, pp.135-136. ISBN 978-0-470-62724-2.
- ↑ Anderson, T. W.. An introduction to multivariate statistical analysis. 3a edició. Hoboken, N.J.: Wiley-Interscience, 2003. ISBN 0-471-36091-0.
- ↑ Per definició, una matriu definida positiva és simètrica
- ↑ Seber, G. A. F.. A matrix handbook for statisticians. Hoboken, N.J.: Wiley-Interscience, 2008, p. 225, propietat 10.3.2. ISBN 978-0-470-22678-0.
- ↑ Bryc, Wlodzimierz. The normal distribution : characterizations with applications. Nova York: Springer-Verlag, 1995. ISBN 0-387-97990-5.
- ↑ Per altres definicions alternatives, vegeu Seber, G. A. F.. A matrix handbook for statisticians. Hoboken, N.J.: Wiley-Interscience, 2008, p. 436. ISBN 978-0-470-22678-0.
Bibliografia
- Cuppens, Roger. Decomposition of multivariate probabilities. Nova York: Academic Press, 1975. ISBN 0-12-199450-3.
- Feller, William, Introducción a la teoría de las probabilidades y sus aplicaciones (vol. 2), Mèxico : Edit. Limusa, 1978.
- Lukacs, Eugen, Characteristic Functions. London: Griffin,, 1960 (primera edició); 1970 (segona edició revisada i ampliada).
- Rényi, Alfred, Wahrscheinlichkeitsrechnung, mit einem Anhang über Informations-theorie. V. E. B. Deutscher Verlag der Wissenschaften, Berlin, 1962. Traducció al francès: Calcul des probabilités avec un appendice sur la théorie de l'information. Paris: Dunod, 1966.
- Sato, Ken-iti. Lévy processes and infinitely divisible distributions. Cambridge, U.K.: Cambridge University Press, 1999, p. 9. ISBN 0-521-55302-4.
Vegeu també
|