Streuungsmaß (Statistik)Streuungsmaße, auch Dispersionsmaße (lateinisch dispersio „Zerstreuung“, von dispergere „verteilen, ausbreiten, zerstreuen“) oder Streuungsparameter genannt, fassen in der deskriptiven Statistik verschiedene Maßzahlen zusammen, die die Streubreite von Beobachtungswerten beziehungsweise einer Häufigkeitsverteilung um einen geeigneten Lageparameter herum beschreiben. Die verschiedenen Berechnungsmethoden unterscheiden sich prinzipiell durch ihre Beeinflussbarkeit beziehungsweise Empfindlichkeit gegenüber Ausreißern. AnforderungenEs sei ein Vektor von Beobachtungwerten (Daten) und eine Funktion. Eine Funktion heißt ein Streuungsmaß, wenn sie im Allgemeinen folgende Anforderungen erfüllt:
Ein einfacher Ansatz für ein Streuungsmaß wäre, die Differenzen der Werte vom empirischen Mittel aufzusummieren. Dies führt zu Diese Summe ergibt allerdings stets 0, weil sich positive und negative Summanden gegenseitig aufheben (Schwerpunkteigenschaft). Das ist also nicht geeignet als Streuungsmaß, da der Wert nicht zunimmt, wenn die Variabilität der Daten steigt. Möglichkeiten bestehen also darin, die Absolutbeträge oder die Quadrate der Abweichungen zu summieren. Streuungsmaßzahlen in der beschreibenden (deskriptiven) StatistikIm Folgenden wird davon ausgegangen, dass reellwertige Beobachtungswerte vorliegen, die inhaltlich zu einer Variablen gehören. Diese können Messwerte sein. Es kann sich um Stichprobenwerte handeln, es kann sich aber auch um die Beobachtungswerte einer Gesamtheit handeln, die nicht als Stichprobe aufgefasst wird. Mit ist der arithmetische Mittelwert der Beobachtungswerte bezeichnet. Streuung um das arithmetische MittelSumme der AbweichungsquadrateEin intuitives Streuungsmaß ist die Summe der Abweichungsquadrate, bei der die quadrierten Abweichungen der Beobachtungswerte vom arithmetischen Mittelwert aufsummiert werden, Empirische VarianzEiner der wichtigsten Streuungsparameter ist die Varianz der Beobachtungswerte, die als definiert ist und die äquivalente Darstellung besitzt.[3] Eine weitere äquivalente Darstellung, die keinen Bezug auf den arithmetischen Mittelwert der Beobachtungswerte nimmt, ist Empirische StandardabweichungDie Standardabweichung ist definiert als die Wurzel aus der Varianz und ist demnach Ein wesentlicher Unterschied zur Varianz ist, dass die Standardabweichung dieselbe Dimension und damit dieselben Einheiten wie die Beobachtungswerte besitzt. Mittlere absolute AbweichungIm Falle einer konkreten Stichprobe mit dem arithmetischen Mittel wird sie errechnet durch Die mittlere absolute Abweichung wird in der mathematischen Statistik meist zugunsten der quadratischen Abweichung umgangen, welche analytisch leichter zu behandeln ist. Die in der Definition verwendete Betragsfunktion ist nicht überall differenzierbar, was die Berechnung des Minimums erschwert. Aufgrund der Ungleichung vom arithmetisch-quadratischen Mittel ist die mittlere absolute Abweichung kleiner oder gleich der Standardabweichung (Gleichheit gilt nur für konstante Zufallsgrößen). Streuung um den MedianQuantilsabstandDer Quantilsabstand ist die Differenz zwischen dem - und -Quantil:
Innerhalb des liegen etwa Prozent aller Beobachtungswerte. InterquartilsabstandDer Interquartilsabstand (engl. interquartile range), abgekürzt IQR, wird als Differenz der Quartile und berechnet: Innerhalb des IQR liegen 50 % aller Messwerte. Er ist – wie auch der Median bzw. – unempfindlich gegenüber Ausreißern. Es lässt sich zeigen, dass er einen Bruchpunkt von hat. Der Interquartilsabstand ist gleich dem Quantilsabstand Mittlere absolute Abweichung vom MedianFür beobachtete Werte mit dem (eindeutigen) Median ist die Mittlere absolute Abweichung vom Median als definiert. Aufgrund der Extremaleigenschaft des Medians gilt im Vergleich mit der mittleren absoluten Abweichung stets
d. h., die mittlere absolute Abweichung bezüglich des Medians ist erst recht kleiner als die Standardabweichung. Median der absoluten Abweichungen vom MedianFür Beobachtungswerte ist die mittlere absolute Abweichung (engl. median absolute deviation, auch MedMed), abgekürzt MAD, ist definiert durch
Die mittlere absolute Abweichung ist ein robuster Schätzer für die Standardabweichung. Es lässt sich zeigen, dass sie einen Bruchpunkt von hat. Weitere StreuungsmaßeSpannweiteDie Spannweite (englisch range) berechnet sich als Differenz zwischen dem größten und dem kleinsten Beobachtungswert: Da die Spannweite nur aus den zwei Extremwerten berechnet wird, ist sie nicht robust gegenüber Ausreißern. Ginis mittlere DifferenzFür Beobachtungswerte heißt die Maßzahl Ginis mittlere Differenz.[5] Mittlere absolute DifferenzFür Beobachtungswerte ist die mittlere absolute Differenz oder mittlere Differenz.[6] Geometrische StandardabweichungDie geometrische Standardabweichung ist ein Streuungsmaß um das geometrische Mittel. Relative StreuungsmaßeRelative Streuungsmaße heißen auch relative Streumaße oder Dispersionskoeffizienten.[6] Ein relatives Streumaß ist typischerweise ein Quotient aus einem Streuungsmaß und einem Lagemaß.[6] Relative SpannweiteDie relative Spannweite berechnet sich als Quotient aus der Spannweite und der Bereichsmitte;[6] VariationskoeffizientDer empirische Variationskoeffizient wird gebildet als Quotient aus empirischer Standardabweichung und arithmetischem Mittel :
Er ist dimensionslos und somit nicht einheitenbehaftet. GinikoeffizientZwischen Ginis mittlerer Differenz , dem arithmetischen Mittelwert und dem Gini-Koeffizienten besteht der Zusammenhang Damit ist der Gini-Koeffizient als Quotient aus einem Streuungsmaß und einem Lagemaß ein relatives Streuungsmaß.[8] Relative durchschnittliche Abweichung vom MedianDie relative durchschnittliche Abweichung vom Median wird gebildet als Quotient aus durchschnittlicher Abweichung vom Median und Median;[6] Relativer QuartilsabstandDer relative Quartilsabstand wird gebildet als Quotient aus Quartilsabstand und Median;[6] Streuungsmaßzahlen in der schließenden (induktiven) StatistikIn der induktiven Statistik sind die Beobachtungswerte Stichprobenwerte aus einer Stichprobe aus einer Grundgesamtheit und Realisierungen von Stichprobenvariablen mit einer gemeinsamen Wahrscheinlichkeitsverteilung des Stichprobenvektors . Dabei liegt häufig der Spezialfall stochastisch unabhängiger und identisch verteilter Stichprobenvariablen vor. In diesem Spezialfall können viele Streuungsmaßzahlen der deskriptiven Statistik als Schätzwerte analoger Streuungsmaßzahlen der Grundgesamtheit verwendet werden. Dass dieses Vorgehen – zumindest für große Stichprobenumfänge – meistens zu plausiblen Schätzern führt, garantiert der Hauptsatz der mathematischen Statistik (Satz von Glivenko und Cantelli), der besagt, dass sich die Häufigkeitsverteilung der Stichprobenwerte für wachsenden Stichprobenumfang in einem sehr weitgehenden Sinn der Verteilung der Grundgesamtheit annähert. StichprobenvarianzIn der schließenden Statistik wird die aus den Stichprobenwerten berechnete Varianz häufig als Stichprobenvarianz bezeichnet. Die aus den Stichprobenwerte berechnete Varianz wird auch als empirische Varianz bezeichnet, um diese von der Varianz der Grundgesamtheit zu unterscheiden. Bei stochastisch unabhängigen und identisch verteilten Stichprobenvariablen ist die Varianz der Grundgesamtheit die Varianz der identisch verteilten Stichprobenvariablen , es gilt also für . Die aus den Stichprobenwerten berechnete Varianz ist ein realisierter Wert der Stichprobenfunktion die eine Schätzfunktion für die Grundgesamtheitsvarianz ist. Korrigierte StichprobenvarianzWenn die Stichprobenwerte als realisierte Werte stochastisch unabhängiger und identisch verteilter Stichprobenvariablen angesehen werden können und wenn mit Hilfe einer Streuungsmaßzahl der Stichprobe auf die Varianz der Grundgesamtheit geschlossen werden soll, dann wird häufig anstelle der Stichprobenvarianz die sogenannte korrigierte Stichprobenvarianz verwendet. Der Grund ist, dass unter den gemachten Voraussetzungen die zugehörige Stichprobenfunktion eine erwartungstreue Schätzfunktion für die Varianz der Grundgesamtheit ist, es gilt also Dagegen hat die Schätzfunktion den Erwartungswert Die Schätzfunktion ist also keine erwartungstreue Schätzfunktion für und hat die Verzerrung . Die Erwartungstreue der Schätzfunktion für den Parameter der Grundgesamtheit hängt entscheidend von der stochastischen Unabhängigkeit der Stichprobenvariablen ab und ist bei allgemeineren Stichprobenplänen (Ziehen mit Zurücklegen, geschichtete Stichprobenziehung usw.) nicht mehr automatisch erfüllt, so dass die Rechtfertigung der Korrektur entfällt. In einem rein beschreibenden Kontext der deskriptiven Statistik, in dem es nicht um eine Schätzung eines Parameters der Grundgesamtheit geht, ist die Verwendung der korrigierten Stichprobenvarianz anstelle der Stichprobenvarianz nicht zu begründen. „Statt mit dem Faktor werden die Varianz und die die Standardabweichung gelegentlich mit dem Faktor definiert, besonders in manchen Taschenrechnern und statistischen Computerprogrammen. Eine Begründung des Faktors ist nur im Rahmen der schließenden Statistik möglich.“[4] Korrigierte StichprobenstandardabweichungWenn in der induktiven Statistik mit Hilfe einer Streuungsmaßzahl der Stichprobe auf die Standardabweichung der Grundgesamtheit geschlossen werden soll, wird häufig die korrigierte Stichprobenstandardabweichung als Schätzwert für die Standardabweichung der Grundgesamtheit verwendet. Allerdings ist die zugehörige Schätzfunktion auch im Fall stochastisch unabhängiger und identisch verteilter Stichprobenvariablen in der Regel keine erwartungstreue Schätzfunktion für den Parameter der Grundgesamtheit. Im Spezialfall einer normalverteilten Grundgesamtheit ist durch eine modifizierte Schätzfunktion eine erwartungstreue Schätzung der Standardabweichung möglich. Alternative Bezeichnungen und NotationenIn vielen Anwendungsbereichen, in denen die Stichprobeninterpretation der beobachteten Werte der Standardfall ist (z. B. Messungen in der Technik und Biometrie) wird die korrigierte Stichprobenvarianz als die Stichprobenvarianz bezeichnet und dann meistens mit bezeichnet. Auch wird die korrigierte Stichprobenvarianz als empirische Streuung oder als empirische Varianz bezeichnet und die zugehörige Stichprobenfunktion als Stichprobenstreuung.[9] In Darstellungen der induktiven Statistik wird häufig das Symbol für die oben mit bezeichnete korrigierte Stichprobenvarianz verwendet und diese einfach als Stichprobenvarianz (englisch sample variance) bezeichnet.[10][11] Analog bezeichnet dann die korrigierte Stichprobenstandardabweichung und wird einfach als Stichprobenstandardabweichung (englisch sample standard deviation) bezeichnet.[12] Streuungsmaßzahlen in der WahrscheinlichkeitstheorieIn der Wahrscheinlichkeitstheorie charakterisieren Streuungsmaßzahlen Eigenschaften einer Wahrscheinlichkeitsverteilung. Die entsprechenden Maßzahlen sind teilweise analog zu den Maßzahlen der deskriptiven Statistik konstruiert. In der mathematischen Statistik werden Methoden zu Charakterisierung von Wahrscheinlichkeitsverteilungen durch beschreibende Kennzahlen der deskriptiven Statistik zugerechnet.[13] Graphische DarstellungsformenSiehe auchEinzelnachweise
Literatur
WeblinksWiktionary: Streuung – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
|