Το λήμμα παραθέτει τις πηγές του αόριστα, χωρίς παραπομπές.Βοηθήστε συνδέοντας το κείμενο με τις πηγές χρησιμοποιώντας παραπομπές, ώστε να είναι επαληθεύσιμο.
Το πρότυπο τοποθετήθηκε χωρίς ημερομηνία. Για τη σημερινή ημερομηνία χρησιμοποιήστε: {{χωρίς παραπομπές|2|02|2025}}
Στη γεωμετρία με τον όρο υπερβολή χαρακτηρίζεται η καμπύλη που ορίζεται ως γεωμετρικός τόπος των σημείωνεπιπέδου, των οποίων η διαφορά των αποστάσεών τους από δύο καθορισμένα σημεία Ε και Ε΄, που λέγονται εστίες της υπερβολής, είναι σταθερή.
Ισοδύναμα ως υπερβολή ορίζεται ο γεωμετρικός τόπος των σημείων του επιπέδου των οποίων ο λόγος της απόστασης κάθε σημείου από σταθερό σημείο προς την απόστασή του από σταθερή ευθεία ισούται πάντα με τον ίδιο αριθμό ε ο οποίος είναι μεγαλύτερος από την μονάδα (ισοδύναμος ορισμός του Πάππου).
Επίσης ισοδύναμα ως υπερβολή μπορεί να ορισθεί ως ο γεωμετρικός τόπος των σημείων του επιπέδου τα οποία ισαπέχουν από δεδομένο κύκλο και σταθερό σημείο (εξωτερικό του κύκλου).
Τέλος, υπερβολή ορίζεται ως η επίπεδη ανοικτή καμπύλη που προκύπτει από την τομή ενός ορθού κυκλικού κώνου από επίπεδο μη παράλληλο με οποιαδήποτε γενέτειρα του.
Η ευθεία που ενώνει τις εστίες της υπερβολής ονομάζεται βασική γραμμή, (Base line).
Η δε κάθετος στο μέσον της βασικής γραμμής ονομάζεται κεντρική γραμμή, (Centre line). Καθίσταται φανερό ότι όλα τα σημεία της κεντρικής γραμμής ισαπέχουν από τις εστίες Ε και Ε΄. Συνεπώς η γραμμή αυτή μπορεί και να χαρακτηρίζεται ως γραμμή "μηδενικής διαφοράς αποστάσεων".
Με τον καθορισμό δύο εστιών υπάρχουν άπειρες ομοέστιες υπερβολές.
Τα σκέλη της κάθε υπερβολής προεκτεινόμενα πολύ πέρα της βασικής γραμμής πλησιάζουν προς την ευθεία και τελικά καθίστανται ευθείες. Το ευθύγραμμο τμήμα της υπερβολής ονομάζεται ασύμπτωτος αυτής, τούτο προεκτεινόμενο διέρχεται από το μέσον της βασικής γραμμής.
Εξίσωση υπερβολής σε καρτεσιανές συντεταγμένες και για συγκεκριμένο καρτεσιανό σύστημα αξόνων
Ισοσκελής υπερβολή
Όταν a=b, οι ασύμπτωτες της υπερβολής σχηματίζουν γωνία 90°, και η καμπύλη ονομάζεται ισοσκελής υπερβολή. Όταν οι ασύπτωτες είναι παράλληλες με τους καρτεσιανούς άξονες η εξίσωση της καμπύλης μπορεί να γραφεί στη μορφή,
ή ακόμα πιο απλά:
ή (αναλόγως τη μορφή της υπερβολής)
Η απλούστερη περίπτωση είναι όταν ,οπότε οι ποσότητες x, y είναι αντιστρόφως ανάλογες.
Εκκεντρότητα: Η εκκεντρότητα μίας ισοσκελούς υπερβολής είναι σταθερή και έχει τιμή .
Παρατηρήσεις
Η απόσταση μεταξύ των ομοεστίων υπερβολών αυξάνει με την αύξηση της απόστασής τους από τη βασική γραμμή. Επίσης η μεταξύ των απόσταση αυξάνει και όσο αυτές απομακρύνονται από της κεντρικής γραμμής.