Share to:

 

Collectin

Collectins (collagen-containing C-type lectins) are a part of the innate immune system. They form a family of collagenous Ca2+-dependent defense lectins, which are found in animals. Collectins are soluble pattern recognition receptors (PRRs). Their function is to bind to oligosaccharide structure or lipids that are on the surface of microorganisms. Like other PRRs they bind pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) of oligosaccharide origin. Binding of collectins to microorganisms may trigger elimination of microorganisms by aggregation, complement activation, opsonization, activation of phagocytosis, or inhibition of microbial growth. Other functions of collectins are modulation of inflammatory, allergic responses, adaptive immune system and clearance of apoptotic cells.

Structure

Functionally collectins are trimers. Monomeric subunit consists of four parts:

Recognition of specific parts of microorganism is mediated by CRD in presence of calcium.[1][2] Affinity of interaction between microbes and collectins depends on the degree of collectin oligomerization and also on the density of ligands on the surface of the microbe.[3]

Types of collectins

Nine types of collectins have been defined:

CL-43, CL-46 and conglutinin are found in bovine.

Function

Aggregation

Collectins can bind to the surface of microorganisms and between carbohydrate ligands. Due to these properties, the interaction can result in aggregation.[5][6]

Opsonization and activation of phagocytosis

Collectins can act as opsonins. There is a specific interaction between collectins and receptors on phagocytic cells which can lead to increased clearance of microorganisms.[7][8][9] MBL can bind to microorganisms and this interaction can lead to opsonization through complement activation,[10] or it can opsonize the microorganism directly.[11] SP-A and SP-D can also interact with microorganisms and phagocytic cells to enhance phagocytosis of the microorganism.[12]

Inhibition of microbial growth

Collectins have effect on microorganism survival. SP-A and SP-D can bind to LPS (lipopolysaccharide) of both Gram-negative and Gram-positive bacteria. SP-A and SP-D can increase permeability of Gram-negative bacterial cell membrane.[13]

Modulation of inflammatory responses

SP-A and SP-D can damp induction of inflammation by LPS or endotoxin. It can be caused by removing the LPS or by binding the LPS to CD14 receptor on macrophages that can block the inflammatory response.[14][15][16] SP-A can also bind to TLR2 (toll-like receptor 2). This interaction causes decrease of TNF-α (tumor necrosis factor-α) production by alveolar macrophages stimulated with peptidoglycan.[17] SP-A and SP-D can modulate cytokine production. They modulate the production of oxygen and nitrogen reactive species which are very important for phagocytic cells.[18][19][20] SP-A and SP-D has s function as chemoattractants for alveolar neutrophils and monocytes.[21] MBL can recognize peptidoglycan via N-acetylglucosamine. This interaction leads to inhibition of ligand-induced inflammatory by macrophage chemokine production.[22]

Modulation of the adaptive immune system

SP-A and SP-D can suppress activated T-lymphocytes and IL-2 (interleukin-2) production.[23][24] SP-D increases bacterial antigen presentation by dendritic cells [25] whereas SP-A blocs differentation of the immature dendritic cells.[26]

Modulation of allergic response

Collectins SP-A and SP-D have anti-allergic effects: they inhibit IgE binding to allergens, decrease histamine release from basophils, and inhibit T-lymphocyte production in the late phase of the inflammation.[27][28][29]

Apoptosis

Collectins SP-A and SP-D enhance clearance of apoptotic cells by macrophages.[30][31]

Complement activation

Collectins are linked with activation of lectin pathway of complement activation. At the beginning, there is a binding of collectin to PAMPs or DAMPs. Collectin MBL is involved in activation of the lectin complement pathway.[32][33] There are three serine proteases, MASP-1, 2 and 3 (MBL-associated serine proteases), which participate in activation of the lectin pathway. MASP-2 has a cleavage activity and it is essential for forming lectin C3 and C5 convertases and for activation of the complement.[34][35][36]

Reviews

For more information and details see reviews:[37][38][39]

References

  1. ^ Weis, W I; G V Crichlow; H M Murthy; W A Hendrickson; K Drickamer (1991-11-05). "Physical characterization and crystallization of the carbohydrate-recognition domain of a mannose-binding protein from rat". The Journal of Biological Chemistry. 266 (31): 20678–20686. doi:10.1016/S0021-9258(18)54762-1. ISSN 0021-9258. PMID 1939118.
  2. ^ Weis, W I; K Drickamer; W A Hendrickson (1992-11-12). "Structure of a C-type mannose-binding protein complexed with an oligosaccharide". Nature. 360 (6400): 127–134. Bibcode:1992Natur.360..127W. doi:10.1038/360127a0. ISSN 0028-0836. PMID 1436090. S2CID 4353217.
  3. ^ Lee, R T; Y Ichikawa; M Fay; K Drickamer; M C Shao; Y C Lee (1991-03-15). "Ligand-binding characteristics of rat serum-type mannose-binding protein (MBP-A). Homology of binding site architecture with mammalian and chicken hepatic lectins". The Journal of Biological Chemistry. 266 (8): 4810–4815. doi:10.1016/S0021-9258(19)67721-5. ISSN 0021-9258. PMID 2002028.
  4. ^ conglutinin at the U.S. National Library of Medicine Medical Subject Headings (MeSH)
  5. ^ Ferguson, J S; D R Voelker; F X McCormack; L S Schlesinger (1999-07-01). "Surfactant protein D binds to Mycobacterium tuberculosis bacilli and lipoarabinomannan via carbohydrate-lectin interactions resulting in reducedphagocytosis of the bacteria by macrophages". Journal of Immunology. 163 (1): 312–321. doi:10.4049/jimmunol.163.1.312. ISSN 0022-1767. S2CID 86321161.
  6. ^ Schelenz, S; R Malhotra; R B Sim; U Holmskov; G J Bancroft (September 1995). "Binding of host collectins to the pathogenic yeast Cryptococcus neoformans: human surfactant protein D acts as an agglutinin for acapsular yeast cells". Infection and Immunity. 63 (9): 3360–3366. doi:10.1128/IAI.63.9.3360-3366.1995. ISSN 0019-9567. PMC 173462. PMID 7642263.
  7. ^ McNeely, T B; J D Coonrod (July 1994). "Aggregation and opsonization of type A but not type B Hemophilus influenzae by surfactant protein A". American Journal of Respiratory Cell and Molecular Biology. 11 (1): 114–122. doi:10.1165/ajrcmb.11.1.8018334. ISSN 1044-1549. PMID 8018334.
  8. ^ O'Riordan, D M; J E Standing; K Y Kwon; D Chang; E C Crouch; A H Limper (June 1995). "Surfactant protein D interacts with Pneumocystis carinii and mediates organism adherence to alveolar macrophages". The Journal of Clinical Investigation. 95 (6): 2699–2710. doi:10.1172/JCI117972. ISSN 0021-9738. PMC 295953. PMID 7769109.
  9. ^ Ofek, I; A Mesika; M Kalina; Y Keisari; R Podschun; H Sahly; D Chang; D McGregor; E Crouch (January 2001). "Surfactant protein D enhances phagocytosis and killing of unencapsulated phase variants of Klebsiella pneumoniae". Infection and Immunity. 69 (1): 24–33. doi:10.1128/IAI.69.1.24-33.2001. ISSN 0019-9567. PMC 97851. PMID 11119485.
  10. ^ Holmskov, Uffe; Steffen Thiel; Jens C Jensenius (2003). "Collections and ficolins: humoral lectins of the innate immune defense". Annual Review of Immunology. 21: 547–578. doi:10.1146/annurev.immunol.21.120601.140954. ISSN 0732-0582. PMID 12524383.
  11. ^ Kuhlman, M; K Joiner; R A Ezekowitz (1989-05-01). "The human mannose-binding protein functions as an opsonin". The Journal of Experimental Medicine. 169 (5): 1733–1745. doi:10.1084/jem.169.5.1733. ISSN 0022-1007. PMC 2189296. PMID 2469767.
  12. ^ Hartshorn, K L; E Crouch; M R White; M L Colamussi; A Kakkanatt; B Tauber; V Shepherd; K N Sastry (June 1998). "Pulmonary surfactant proteins A and D enhance neutrophil uptake of bacteria". The American Journal of Physiology. 274 (6 Pt 1): L958–969. doi:10.1152/ajplung.1998.274.6.L958. ISSN 0002-9513. PMID 9609735.
  13. ^ Wu, Huixing; Alexander Kuzmenko; Sijue Wan; Lyndsay Schaffer; Alison Weiss; James H Fisher; Kwang Sik Kim; Francis X McCormack (May 2003). "Surfactant proteins A and D inhibit the growth of Gram-negative bacteria by increasing membrane permeability". The Journal of Clinical Investigation. 111 (10): 1589–1602. doi:10.1172/JCI16889. ISSN 0021-9738. PMC 155045. PMID 12750409.
  14. ^ van Rozendaal, B A; C H van de Lest; M van Eijk; L M van Golde; W F Voorhout; H P van Helden; H P Haagsman (1999-08-30). "Aerosolized endotoxin is immediately bound by pulmonary surfactant protein D in vivo". Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 1454 (3): 261–269. doi:10.1016/s0925-4439(99)00042-3. ISSN 0006-3002. PMID 10452960.
  15. ^ Borron, P; J C McIntosh; T R Korfhagen; J A Whitsett; J Taylor; J R Wright (April 2000). "Surfactant-associated protein A inhibits LPS-induced cytokine and nitric oxide production in vivo". American Journal of Physiology. Lung Cellular and Molecular Physiology. 278 (4): L840–847. doi:10.1152/ajplung.2000.278.4.l840. ISSN 1040-0605. PMID 10749762. S2CID 25269338.
  16. ^ Sano, H; H Chiba; D Iwaki; H Sohma; D R Voelker; Y Kuroki (2000-07-21). "Surfactant proteins A and D bind CD14 by different mechanisms". The Journal of Biological Chemistry. 275 (29): 22442–22451. doi:10.1074/jbc.M001107200. ISSN 0021-9258. PMID 10801802.
  17. ^ Murakami, Seiji; Daisuke Iwaki; Hiroaki Mitsuzawa; Hitomi Sano; Hiroki Takahashi; Dennis R Voelker; Toyoaki Akino; Yoshio Kuroki (2002-03-01). "Surfactant protein A inhibits peptidoglycan-induced tumor necrosis factor-alpha secretion in U937 cells and alveolar macrophages by direct interaction with toll-like receptor 2". The Journal of Biological Chemistry. 277 (9): 6830–6837. doi:10.1074/jbc.M106671200. ISSN 0021-9258. PMID 11724772.
  18. ^ Tino, M J; J R Wright (1998-11-19). "Interactions of surfactant protein A with epithelial cells and phagocytes". Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 1408 (2–3): 241–263. doi:10.1016/s0925-4439(98)00071-4. ISSN 0006-3002. PMID 9813349.
  19. ^ Wright, J R (October 1997). "Immunomodulatory functions of surfactant". Physiological Reviews. 77 (4): 931–962. doi:10.1152/physrev.1997.77.4.931. ISSN 0031-9333. PMID 9354809.
  20. ^ Crouch, E; J R Wright (2001). "Surfactant proteins a and d and pulmonary host defense". Annual Review of Physiology. 63: 521–554. doi:10.1146/annurev.physiol.63.1.521. ISSN 0066-4278. PMID 11181966.
  21. ^ Tino, M J; J R Wright (January 1999). "Surfactant proteins A and D specifically stimulate directed actin-based responses in alveolar macrophages". The American Journal of Physiology. 276 (1 Pt 1): L164–174. doi:10.1152/ajplung.1999.276.1.L164. ISSN 0002-9513. PMID 9887069.
  22. ^ Nadesalingam, Jeya; Alister W Dodds; Kenneth B M Reid; Nades Palaniyar (2005-08-01). "Mannose-binding lectin recognizes peptidoglycan via the N-acetyl glucosamine moiety, and inhibits ligand-induced proinflammatory effect and promotes chemokine production by macrophages". Journal of Immunology. 175 (3): 1785–1794. doi:10.4049/jimmunol.175.3.1785. ISSN 0022-1767. PMID 16034120.
  23. ^ Borron, P; F X McCormack; B M Elhalwagi; Z C Chroneos; J F Lewis; S Zhu; J R Wright; V L Shepherd; F Possmayer; K Inchley; L J Fraher (October 1998). "Surfactant protein A inhibits T cell proliferation via its collagen-like tail and a 210-kDa receptor". The American Journal of Physiology. 275 (4 Pt 1): L679–686. doi:10.1152/ajplung.1998.275.4.L679. ISSN 0002-9513. PMID 9755099.
  24. ^ Borron, P J; E C Crouch; J F Lewis; J R Wright; F Possmayer; L J Fraher (1998-11-01). "Recombinant rat surfactant-associated protein D inhibits human T lymphocyte proliferation and IL-2 production". Journal of Immunology. 161 (9): 4599–4603. doi:10.4049/jimmunol.161.9.4599. ISSN 0022-1767. PMID 9794387. S2CID 26563431.
  25. ^ Brinker, K G; E Martin; P Borron; E Mostaghel; C Doyle; C V Harding; J R Wright (December 2001). "Surfactant protein D enhances bacterial antigen presentation by bone marrow-derived dendritic cells". American Journal of Physiology. Lung Cellular and Molecular Physiology. 281 (6): L1453–1463. doi:10.1152/ajplung.2001.281.6.l1453. ISSN 1040-0605. PMID 11704542. S2CID 1356964.
  26. ^ Brinker, Karen G; Hollie Garner; Jo Rae Wright (January 2003). "Surfactant protein A modulates the differentiation of murine bone marrow-derived dendritic cells". American Journal of Physiology. Lung Cellular and Molecular Physiology. 284 (1): L232–241. doi:10.1152/ajplung.00187.2002. ISSN 1040-0605. PMID 12388334.
  27. ^ Strong, P; K B M Reid; H Clark (October 2002). "Intranasal delivery of a truncated recombinant human SP-D is effective at down-regulating allergic hypersensitivity in mice sensitized to allergens of Aspergillus fumigatus". Clinical and Experimental Immunology. 130 (1): 19–24. doi:10.1046/j.1365-2249.2002.01968.x. ISSN 0009-9104. PMC 1906502. PMID 12296848.
  28. ^ Wang, J Y; U Kishore; B L Lim; P Strong; K B Reid (November 1996). "Interaction of human lung surfactant proteins A and D with mite (Dermatophagoides pteronyssinus) allergens". Clinical and Experimental Immunology. 106 (2): 367–373. doi:10.1046/j.1365-2249.1996.d01-838.x. ISSN 0009-9104. PMC 2200585. PMID 8918587.
  29. ^ Wang, J Y; C C Shieh; P F You; H Y Lei; K B Reid (August 1998). "Inhibitory effect of pulmonary surfactant proteins A and D on allergen-induced lymphocyte proliferation and histamine release in children with asthma". American Journal of Respiratory and Critical Care Medicine. 158 (2): 510–518. doi:10.1164/ajrccm.158.2.9709111. ISSN 1073-449X. PMID 9700129.
  30. ^ Vandivier, R William; Carol Anne Ogden; Valerie A Fadok; Peter R Hoffmann; Kevin K Brown; Marina Botto; Mark J Walport; James H Fisher; Peter M Henson; Kelly E Greene (2002-10-01). "Role of surfactant proteins A, D, and C1q in the clearance of apoptotic cells in vivo and in vitro: calreticulin and CD91 as a common collectin receptor complex". Journal of Immunology. 169 (7): 3978–3986. doi:10.4049/jimmunol.169.7.3978. ISSN 0022-1767. PMID 12244199.
  31. ^ Schagat, T L; J A Wofford; J R Wright (2001-02-15). "Surfactant protein A enhances alveolar macrophage phagocytosis of apoptotic neutrophils". Journal of Immunology. 166 (4): 2727–2733. doi:10.4049/jimmunol.166.4.2727. ISSN 0022-1767. PMID 11160338.
  32. ^ Schwaeble, Wilhelm; Mads R Dahl; Steffen Thiel; Cordula Stover; Jens C Jensenius (September 2002). "The mannan-binding lectin-associated serine proteases (MASPs) and MAp19: four components of the lectin pathway activation complex encoded by two genes". Immunobiology. 205 (4–5): 455–466. doi:10.1078/0171-2985-00146. ISSN 0171-2985. PMID 12396007.
  33. ^ Fujita, Teizo (May 2002). "Evolution of the lectin-complement pathway and its role in innate immunity". Nature Reviews. Immunology. 2 (5): 346–353. doi:10.1038/nri800. ISSN 1474-1733. PMID 12033740. S2CID 24314003.
  34. ^ Schwaeble, Wilhelm; Mads R Dahl; Steffen Thiel; Cordula Stover; Jens C Jensenius (September 2002). "The mannan-binding lectin-associated serine proteases (MASPs) and MAp19: four components of the lectin pathway activation complex encoded by two genes". Immunobiology. 205 (4–5): 455–466. doi:10.1078/0171-2985-00146. ISSN 0171-2985. PMID 12396007.
  35. ^ Thiel, S; T Vorup-Jensen; C M Stover; W Schwaeble; S B Laursen; K Poulsen; A C Willis; P Eggleton; S Hansen; U Holmskov; K B Reid; J C Jensenius (1997-04-03). "A second serine protease associated with mannan-binding lectin that activates complement". Nature. 386 (6624): 506–510. Bibcode:1997Natur.386..506T. doi:10.1038/386506a0. ISSN 0028-0836. PMID 9087411. S2CID 4261967.
  36. ^ Schwaeble, Wilhelm J; Nicholas J Lynch; James E Clark; Michael Marber; Nilesh J Samani; Youssif Mohammed Ali; Thomas Dudler; Brian Parent; Karl Lhotta; Russell Wallis; Conrad A Farrar; Steven Sacks; Haekyung Lee; Ming Zhang; Daisuke Iwaki; Minoru Takahashi; Teizo Fujita; Clark E Tedford; Cordula M Stover (2011-05-03). "Targeting of mannan-binding lectin-associated serine protease-2 confers protection from myocardial and gastrointestinal ischemia/reperfusion injury". Proceedings of the National Academy of Sciences of the United States of America. 108 (18): 7523–7528. Bibcode:2011PNAS..108.7523S. doi:10.1073/pnas.1101748108. ISSN 1091-6490. PMC 3088599. PMID 21502512.
  37. ^ van de Wetering, J Koenraad; Lambert M G van Golde; Joseph J Batenburg (April 2004). "Collectins: players of the innate immune system". European Journal of Biochemistry. 271 (7): 1229–1249. doi:10.1111/j.1432-1033.2004.04040.x. ISSN 0014-2956. PMID 15030473.
  38. ^ Gupta, Garima; Avadhesha Surolia (May 2007). "Collectins: sentinels of innate immunity". BioEssays. 29 (5): 452–464. doi:10.1002/bies.20573. ISSN 0265-9247. PMID 17450595. S2CID 38069549.
  39. ^ Nayak, Annapurna; Eswari Dodagatta-Marri; Anthony George Tsolaki; Uday Kishore (2012). "An Insight into the Diverse Roles of Surfactant Proteins, SP-A and SP-D in Innate and Adaptive Immunity". Frontiers in Immunology. 3: 131. doi:10.3389/fimmu.2012.00131. ISSN 1664-3224. PMC 3369187. PMID 22701116.
Kembali kehalaman sebelumnya