Davis distribution Parameters
b
>
0
{\displaystyle b>0}
scale
n
>
0
{\displaystyle n>0}
shape
μ
>
0
{\displaystyle \mu >0}
location Support
x
>
μ
{\displaystyle x>\mu }
PDF
b
n
(
x
−
μ
)
−
1
−
n
(
e
b
x
−
μ
−
1
)
Γ
(
n
)
ζ
(
n
)
{\displaystyle {\frac {b^{n}{(x-\mu )}^{-1-n}}{\left(e^{\frac {b}{x-\mu }}-1\right)\Gamma (n)\zeta (n)}}}
Where
Γ
(
n
)
{\displaystyle \Gamma (n)}
is the Gamma function and
ζ
(
n
)
{\displaystyle \zeta (n)}
is the Riemann zeta function Mean
{
μ
+
b
ζ
(
n
−
1
)
(
n
−
1
)
ζ
(
n
)
if
n
>
2
Indeterminate
otherwise
{\displaystyle {\begin{cases}\mu +{\frac {b\zeta (n-1)}{(n-1)\zeta (n)}}&{\text{if}}\ n>2\\{\text{Indeterminate}}&{\text{otherwise}}\ \end{cases}}}
Variance
{
b
2
(
−
(
n
−
2
)
ζ
(
n
−
1
)
2
+
(
n
−
1
)
ζ
(
n
−
2
)
ζ
(
n
)
)
(
n
−
2
)
(
n
−
1
)
2
ζ
(
n
)
2
if
n
>
3
Indeterminate
otherwise
{\displaystyle {\begin{cases}{\frac {b^{2}\left(-(n-2){\zeta (n-1)}^{2}+(n-1)\zeta (n-2)\zeta (n)\right)}{(n-2){(n-1)}^{2}{\zeta (n)}^{2}}}&{\text{if}}\ n>3\\{\text{Indeterminate}}&{\text{otherwise}}\ \end{cases}}}
In statistics , the Davis distributions are a family of continuous probability distributions . It is named after Harold T. Davis (1892–1974), who in 1941 proposed this distribution to model income sizes. (The Theory of Econometrics and Analysis of Economic Time Series ). It is a generalization of the Planck's law of radiation from statistical physics .
Definition
The probability density function of the Davis distribution is given by
f
(
x
;
μ
,
b
,
n
)
=
b
n
(
x
−
μ
)
−
1
−
n
(
e
b
x
−
μ
−
1
)
Γ
(
n
)
ζ
(
n
)
{\displaystyle f(x;\mu ,b,n)={\frac {b^{n}{(x-\mu )}^{-1-n}}{\left(e^{\frac {b}{x-\mu }}-1\right)\Gamma (n)\zeta (n)}}}
where
Γ
(
n
)
{\displaystyle \Gamma (n)}
is the Gamma function and
ζ
(
n
)
{\displaystyle \zeta (n)}
is the Riemann zeta function . Here μ, b , and n are parameters of the distribution, and n need not be an integer.
Background
In an attempt to derive an expression that would represent not merely the upper tail of the distribution of income, Davis required an appropriate model with the following properties[ 1]
f
(
μ
)
=
0
{\displaystyle f(\mu )=0\,}
for some
μ
>
0
{\displaystyle \mu >0\,}
A modal income exists
For large x , the density behaves like a Pareto distribution :
f
(
x
)
∼
A
(
x
−
μ
)
−
α
−
1
.
{\displaystyle f(x)\sim A{(x-\mu )}^{-\alpha -1}\,.}
If
X
∼
D
a
v
i
s
(
b
=
1
,
n
=
4
,
μ
=
0
)
{\displaystyle X\sim \mathrm {Davis} (b=1,n=4,\mu =0)\,}
then
1
X
∼
P
l
a
n
c
k
{\displaystyle {\tfrac {1}{X}}\sim \mathrm {Planck} }
(Planck's law )
Notes
References
Discrete univariate
with finite support with infinite support
Continuous univariate
supported on a bounded interval supported on a semi-infinite interval supported on the whole real line with support whose type varies
Mixed univariate
Multivariate (joint) Directional Degenerate and singular Families