In quantum mechanics, notably in quantum information theory, fidelity quantifies the "closeness" between two density matrices. It expresses the probability that one state will pass a test to identify as the other. It is not a metric on the space of density matrices, but it can be used to define the Bures metric on this space.
Definition
The fidelity between two quantum states and , expressed as density matrices, is commonly defined as:[1][2]
As will be discussed in the following sections, this expression can be simplified in various cases of interest. In particular, for pure states, and , it equals:This tells us that the fidelity between pure states has a straightforward interpretation in terms of probability of finding the state when measuring in a basis containing .
Some authors use an alternative definition and call this quantity fidelity.[2] The definition of however is more common.[3][4][5] To avoid confusion, could be called "square root fidelity". In any case it is advisable to clarify the adopted definition whenever the fidelity is employed.
Given a classical measure of the distinguishability of two probability distributions, one can motivate a measure of distinguishability of two quantum states as follows: if an experimenter is attempting to determine whether a quantum state is either of two possibilities or , the most general possible measurement they can make on the state is a POVM, which is described by a set of Hermitianpositive semidefiniteoperators. When measuring a state with this POVM, -th outcome is found with probability , and likewise with probability for . The ability to distinguish between and is then equivalent to their ability to distinguish between the classical probability distributions and . A natural question is then to ask what is the POVM the makes the two distributions as distinguishable as possible, which in this context means to minimize the Bhattacharyya coefficient over the possible choices of POVM. Formally, we are thus led to define the fidelity between quantum states as:
It was shown by Fuchs and Caves[6] that the minimization in this expression can be computed explicitly, with solution the projective POVM corresponding to measuring in the eigenbasis of , and results in the common explicit expression for the fidelity as
Equivalent expressions
Equivalent expression via trace norm
An equivalent expression for the fidelity between arbitrary states via the trace norm is:
where the absolute value of an operator is here defined as .
Equivalent expression via characteristic polynomials
Since the trace of a matrix is equal to the sum of its eigenvalues
where the are the eigenvalues of , which is positive semidefinite by construction and so the square roots of the eigenvalues are well defined. Because the characteristic polynomial of a product of two matrices is independent of the order, the spectrum of a matrix product is invariant under cyclic permutation, and so these eigenvalues can instead be calculated from .[7] Reversing the trace property leads to
.
Expressions for pure states
If (at least) one of the two states is pure, for example , the fidelity simplifies toThis follows observing that if is pure then , and thus
If both states are pure, and , then we get the even simpler expression:
Properties
Some of the important properties of the quantum state fidelity are:
Symmetry. .
Bounded values. For any and , , and .
Consistency with fidelity between probability distributions. If and commute, the definition simplifies to where are the eigenvalues of , respectively. To see this, remember that if then they can be diagonalized in the same basis: so that
Explicit expression for qubits.
If and are both qubit states, the fidelity can be computed as
[1][8]
Qubit state means that and are represented by two-dimensional matrices. This result follows noticing that is a positive semidefinite operator, hence , where and are the (nonnegative) eigenvalues of . If (or ) is pure, this result is simplified further to since for pure states.
Unitary invariance
Direct calculation shows that the fidelity is preserved by unitary evolution, i.e.
Relationship with the fidelity between the corresponding probability distributions
Let be an arbitrary positive operator-valued measure (POVM); that is, a set of positive semidefinite operators satisfying . Then, for any pair of states and , we have
where in the last step we denoted with and the probability distributions obtained by measuring with the POVM .
This shows that the square root of the fidelity between two quantum states is upper bounded by the Bhattacharyya coefficient between the corresponding probability distributions in any possible POVM. Indeed, it is more generally true that where , and the minimum is taken over all possible POVMs. More specifically, one can prove that the minimum is achieved by the projective POVM corresponding to measuring in the eigenbasis of the operator .[9]
Proof of inequality
As was previously shown, the square root of the fidelity can be written as which is equivalent to the existence of a unitary operator such that
Remembering that holds true for any POVM, we can then writewhere in the last step we used Cauchy-Schwarz inequality as in .
Behavior under quantum operations
The fidelity between two states can be shown to never decrease when a non-selective quantum operation is applied to the states:[10] for any trace-preserving completely positive map.
When A and B are both density operators, this is a quantum generalization of the statistical distance. This is relevant because the trace distance provides upper and lower bounds on the fidelity as quantified by the Fuchs–van de Graaf inequalities,[11]
Often the trace distance is easier to calculate or bound than the fidelity, so these relationships are quite useful. In the case that at least one of the states is a pure state Ψ, the lower bound can be tightened.
Uhlmann's theorem
We saw that for two pure states, their fidelity coincides with the overlap. Uhlmann's theorem[12] generalizes this statement to mixed states, in terms of their purifications:
Theorem Let ρ and σ be density matrices acting on Cn. Let ρ1⁄2 be the unique positive square root of ρ and
be a purification of ρ (therefore is an orthonormal basis), then the following equality holds:
where is a purification of σ. Therefore, in general, the fidelity is the maximum overlap between purifications.
Sketch of proof
A simple proof can be sketched as follows. Let denote the vector
and σ1⁄2 be the unique positive square root of σ. We see that, due to the unitary freedom in square root factorizations and choosing orthonormal bases, an arbitrary purification of σ is of the form
But in general, for any square matrix A and unitary U, it is true that |tr(AU)| ≤ tr((A*A)1⁄2). Furthermore, equality is achieved if U* is the unitary operator in the polar decomposition of A. From this follows directly Uhlmann's theorem.
Proof with explicit decompositions
We will here provide an alternative, explicit way to prove Uhlmann's theorem.
Let and be purifications of and , respectively. To start, let us show that .
The general form of the purifications of the states is:were are the eigenvectors of , and are arbitrary orthonormal bases. The overlap between the purifications iswhere the unitary matrix is defined asThe conclusion is now reached via using the inequality : Note that this inequality is the triangle inequality applied to the singular values of the matrix. Indeed, for a generic matrix and unitary , we havewhere are the (always real and non-negative) singular values of , as in the singular value decomposition. The inequality is saturated and becomes an equality when , that is, when and thus . The above shows that when the purifications and are such that . Because this choice is possible regardless of the states, we can finally conclude that
Consequences
Some immediate consequences of Uhlmann's theorem are
Fidelity is symmetric in its arguments, i.e. F (ρ,σ) = F (σ,ρ). Note that this is not obvious from the original definition.
F (ρ,σ) = 1 if and only if ρ = σ, since Ψρ = Ψσ implies ρ = σ.
So we can see that fidelity behaves almost like a metric. This can be formalized and made useful by defining
As the angle between the states and . It follows from the above properties that is non-negative, symmetric in its inputs, and is equal to zero if and only if . Furthermore, it can be proved that it obeys the triangle inequality,[2] so this angle is a metric on the state space: the Fubini–Study metric.[13]
^Bengtsson, Ingemar (2017). Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge, United Kingdom New York, NY: Cambridge University Press. ISBN978-1-107-02625-4.
^Walls, D. F.; Milburn, G. J. (2008). Quantum Optics. Berlin: Springer. ISBN978-3-540-28573-1.
^Jaeger, Gregg (2007). Quantum Information: An Overview. New York London: Springer. ISBN978-0-387-35725-6.
^C. A. Fuchs and J. van de Graaf, "Cryptographic Distinguishability Measures for Quantum Mechanical States", IEEE Trans. Inf. Theory 45, 1216 (1999). arXiv:quant-ph/9712042