Gas in an atmosphere with certain absorption characteristics
This article is about the physical properties of greenhouse gases. For how human activities are adding to greenhouse gases, see Greenhouse gas emissions.
Greenhouse gases (GHGs) are the gases in the atmosphere that raise the surface temperature of planets such as the Earth. What distinguishes them from other gases is that they absorb the wavelengths of radiation that a planet emits, resulting in the greenhouse effect.[1] The Earth is warmed by sunlight, causing its surface to radiate heat, which is then mostly absorbed by greenhouse gases. Without greenhouse gases in the atmosphere, the average temperature of Earth's surface would be about −18 °C (0 °F),[2] rather than the present average of 15 °C (59 °F).[3][4]
Natural flows of carbon happen between the atmosphere, terrestrial ecosystems, the ocean, and sediments. These flows have been fairly balanced over the past one million years,[16] although greenhouse gas levels have varied widely in the more distant past. Carbon dioxide levels are now higher than they have been for three million years.[17] If current emission rates continue then global warming will surpass 2.0 °C (3.6 °F) sometime between 2040 and 2070. This is a level which the Intergovernmental Panel on Climate Change (IPCC) says is "dangerous".[18]
Properties and mechanisms
Greenhouse gases are infrared active, meaning that they absorb and emit infrared radiation in the same long wavelength range as what is emitted by the Earth's surface, clouds and atmosphere.[19]: 2233
Earth absorbs some of the radiant energy received from the sun, reflects some of it as light and reflects or radiates the rest back to space as heat. A planet's surface temperature depends on this balance between incoming and outgoing energy. When Earth's energy balance is shifted, its surface becomes warmer or cooler, leading to a variety of changes in global climate.[25]Radiative forcing is a metric calculated in watts per square meter, which characterizes the impact of an external change in a factor that influences climate. It is calculated as the difference in top-of-atmosphere (TOA) energy balance immediately caused by such an external change. A positive forcing, such as from increased concentrations of greenhouse gases, means more energy arriving than leaving at the top-of-atmosphere, which causes additional warming, while negative forcing, like from sulfates forming in the atmosphere from sulfur dioxide, leads to cooling.[19]: 2245 [26]
Within the lower atmosphere, greenhouse gases exchange thermal radiation with the surface and limit radiative heat flow away from it, which reduces the overall rate of upward radiative heat transfer.[27]: 139 [28] The increased concentration of greenhouse gases is also cooling the upper atmosphere, as it is much thinner than the lower layers, and any heat re-emitted from greenhouse gases is more likely to travel further to space than to interact with the fewer gas molecules in the upper layers. The upper atmosphere is also shrinking as the result.[29]
Contributions of specific gases to the greenhouse effect
Anthropogenic changes to the natural greenhouse effect are sometimes referred to as the enhanced greenhouse effect.[19]: 2223
This table shows the most important contributions to the overall greenhouse effect, without which the average temperature of Earth's surface would be about −18 °C (0 °F),[2] instead of around 15 °C (59 °F).[3] This table also specifies troposphericozone, because this gas has a cooling effect in the stratosphere, but a warming influence comparable to nitrous oxide and CFCs in the troposphere.[30]
K&T (1997) used 353 ppm CO2 and calculated 125 W/m2 total clear-sky greenhouse effect; relied on single atmospheric profile and cloud model. "With Clouds" percentages are from Schmidt (2010) interpretation of K&T (1997). Schmidt (2010) used 1980 climatology with 339 ppm CO2 and 155 W/m2 total greenhouse effect; accounted for temporal and 3-D spatial distribution of absorbers.
Special role of water vapor
Water vapor is the most important greenhouse gas overall, being responsible for 41–67% of the greenhouse effect,[31][32] but its global concentrations are not directly affected by human activity. While local water vapor concentrations can be affected by developments such as irrigation, it has little impact on the global scale due to its short residence time of about nine days.[34] Indirectly, an increase in global temperatures will also increase water vapor concentrations and thus their warming effect, in a process known as water vapor feedback. It occurs because the Clausius–Clapeyron relation holds that more water vapor will be present per unit volume at elevated temperatures.[35] Thus, local atmospheric concentration of water vapor varies from less than 0.01% in extremely cold regions up to 3% by mass in saturated air at about 32 °C.[36]
Global warming potential (GWP) and CO2 equivalents
Global warming potential (GWP) is a measure of how much heat a greenhouse gas traps in the atmosphere over a specific time period, relative to carbon dioxide (CO2).[37]: 2232 It is expressed as a multiple of warming caused by the same mass of carbon dioxide (CO2). Therefore, by definition CO2 has a GWP of 1. For other gases it depends on how strongly the gas absorbs thermal radiation, how quickly the gas leaves the atmosphere, and the time frame considered.
For example, methane has a GWP over 20 years (GWP-20) of 81.2[38] meaning that, a leak of a tonne of methane is equivalent to emitting 81.2 tonnes of carbon dioxide measured over 20 years. As methane has a much shorter atmospheric lifetime than carbon dioxide, its GWP is much less over longer time periods, with a GWP-100 of 27.9 and a GWP-500 of 7.95.[38]: 7SM-24
The carbon dioxide equivalent (CO2e or CO2eq or CO2-e or CO2-eq) can be calculated from the GWP. For any gas, it is the mass of CO2 that would warm the earth as much as the mass of that gas. Thus it provides a common scale for measuring the climate effects of different gases. It is calculated as GWP times mass of the other gas.
List of all greenhouse gases
The contribution of each gas to the enhanced greenhouse effect is determined by the characteristics of that gas, its abundance, and any indirect effects it may cause. For example, the direct radiative effect of a mass of methane is about 84 times stronger than the same mass of carbon dioxide over a 20-year time frame.[42] Since the 1980s, greenhouse gas forcing contributions (relative to year 1750) are also estimated with high accuracy using IPCC-recommended expressions derived from radiative transfer models.[43]
The concentration of a greenhouse gas is typically measured in parts per million (ppm) or parts per billion (ppb) by volume. A CO2 concentration of 420 ppm means that 420 out of every million air molecules is a CO2 molecule. The first 30 ppm increase in CO2 concentrations took place in about 200 years, from the start of the Industrial Revolution to 1958; however the next 90 ppm increase took place within 56 years, from 1958 to 2014.[8][44][45] Similarly, the average annual increase in the 1960s was only 37% of what it was in 2000 through 2007.[46]
Many observations are available online in a variety of Atmospheric Chemistry Observational Databases. The table below shows the most influential long-lived, well-mixed greenhouse gases, along with their tropospheric concentrations and direct radiative forcings, as identified by the Intergovernmental Panel on Climate Change (IPCC).[47] Abundances of these trace gases are regularly measured by atmospheric scientists from samples collected throughout the world.[48][49][50] It excludes water vapor because changes in its concentrations are calculated as a climate change feedback indirectly caused by changes in other greenhouse gases, as well as ozone, whose concentrations are only modified indirectly by various refrigerants that cause ozone depletion. Some short-lived gases (e.g. carbon monoxide, NOx) and aerosols (e.g. mineral dust or black carbon) are also excluded because of limited role and strong variation, along with minor refrigerants and other halogenated gases, which have been mass-produced in smaller quantities than those in the table.[47]: 731–738 and Annex III of the 2021 IPCC WG1 Report[51]: 4–9
IPCC list of greenhouse gases with lifetime, 100-year global warming potential, concentrations in the troposphere and radiative forcings. The abbreviations TAR, AR4, AR5 and AR6 refer to the different IPCC reports over the years. The baseline is pre-industrialization (year 1750).
aMole fractions: μmol/mol = ppm = parts per million (106); nmol/mol = ppb = parts per billion (109); pmol/mol = ppt = parts per trillion (1012).
A The IPCC states that "no single atmospheric lifetime can be given" for CO2.[47]: 731 This is mostly due to the rapid growth and cumulative magnitude of the disturbances to Earth's carbon cycle by the geologic extraction and burning of fossil carbon.[56] As of year 2014, fossil CO2 emitted as a theoretical 10 to 100 GtC pulse on top of the existing atmospheric concentration was expected to be 50% removed by land vegetation and ocean sinks in less than about a century, as based on the projections of coupled models referenced in the AR5 assessment.[57] A substantial fraction (20–35%) was also projected to remain in the atmosphere for centuries to millennia, where fractional persistence increases with pulse size.[58][59]
B Values are relative to year 1750. AR6 reports the effective radiative forcing which includes effects of rapid adjustments in the atmosphere and at the surface.[60]
Factors affecting concentrations
Atmospheric concentrations are determined by the balance between sources (emissions of the gas from human activities and natural systems) and sinks (the removal of the gas from the atmosphere by conversion to a different chemical compound or absorption by bodies of water).[61]: 512
Airborne fraction
The proportion of an emission remaining in the atmosphere after a specified time is the "airborne fraction" (AF). The annual airborne fraction is the ratio of the atmospheric increase in a given year to that year's total emissions. The annual airborne fraction for CO2 had been stable at 0.45 for the past six decades even as the emissions have been increasing. This means that the other 0.55 of emitted CO2 is absorbed by the land and atmosphere carbon sinks within the first year of an emission.[56] In the high-emission scenarios, the effectiveness of carbon sinks will be lower, increasing the atmospheric fraction of CO2 even though the raw amount of emissions absorbed will be higher than in the present.[62]: 746
Atmospheric lifetime
Major greenhouse gases are well mixed and take many years to leave the atmosphere.[64]
The atmospheric lifetime of a greenhouse gas refers to the time required to restore equilibrium following a sudden increase or decrease in its concentration in the atmosphere. Individual atoms or molecules may be lost or deposited to sinks such as the soil, the oceans and other waters, or vegetation and other biological systems, reducing the excess to background concentrations. The average time taken to achieve this is the mean lifetime. This can be represented through the following formula, where the lifetime of an atmospheric species X in a one-box model is the average time that a molecule of X remains in the box.[65]
can also be defined as the ratio of the mass (in kg) of X in the box to its removal rate, which is the sum of the flow of X out of the box
(),
chemical loss of X
(),
and deposition of X
()
(all in kg/s):
If input of this gas into the box ceased, then after time , its concentration would decrease by about 63%.
Changes to any of these variables can alter the atmospheric lifetime of a greenhouse gas. For instance, methane's atmospheric lifetime is estimated to have been lower in the 19th century than now, but to have been higher in the second half of the 20th century than after 2000.[63] Carbon dioxide has an even more variable lifetime, which cannot be specified down to a single number.[66][42][19]: 2237 Scientists instead say that while the first 10% of carbon dioxide's airborne fraction (not counting the ~50% absorbed by land and ocean sinks within the emission's first year) is removed "quickly", the vast majority of the airborne fraction – 80% – lasts for "centuries to millennia". The remaining 10% stays for tens of thousands of years. In some models, this longest-lasting fraction is as large as 30%.[67][68]
Estimates in 2023 found that the current carbon dioxide concentration in the atmosphere may be the highest it has been in the last 14 million years.[69] However the IPCC Sixth Assessment Report estimated similar levels 3 to 3.3 million years ago in the mid-Pliocene warm period. This period can be a proxy for likely climate outcomes with current levels of CO2.[70]: Figure 2.34
Carbon dioxide is believed to have played an important effect in regulating Earth's temperature throughout its 4.54 billion year history. Early in the Earth's life, scientists have found evidence of liquid water indicating a warm world even though the Sun's output is believed to have only been 70% of what it is today. Higher carbon dioxide concentrations in the early Earth's atmosphere might help explain this faint young sun paradox. When Earth first formed, Earth's atmosphere may have contained more greenhouse gases and CO2 concentrations may have been higher, with estimated partial pressure as large as 1,000 kPa (10 bar), because there was no bacterial photosynthesis to reduce the gas to carbon compounds and oxygen. Methane, a very active greenhouse gas, may have been more prevalent as well.[71][72]
Greenhouse gas monitoring involves the direct measurement of atmospheric concentrations and direct and indirect measurement of greenhouse gas emissions. Indirect methods calculate emissions of greenhouse gases based on related metrics such as fossil fuel extraction.[56]
The Annual Greenhouse Gas Index (AGGI) is defined by atmospheric scientists at NOAA as the ratio of total direct radiative forcing due to long-lived and well-mixed greenhouse gases for any year for which adequate global measurements exist, to that present in year 1990.[41][75] These radiative forcing levels are relative to those present in year 1750 (i.e. prior to the start of the industrial era). 1990 is chosen because it is the baseline year for the Kyoto Protocol, and is the publication year of the first IPCC Scientific Assessment of Climate Change. As such, NOAA states that the AGGI "measures the commitment that (global) society has already made to living in a changing climate. It is based on the highest quality atmospheric observations from sites around the world. Its uncertainty is very low."[76]
There are several surface measurement (including flasks and continuous in situ) networks including NOAA/ERSL,[77] WDCGG,[78] and RAMCES.[79] The NOAA/ESRL Baseline Observatory Network, and the Scripps Institution of Oceanography Network[80] data are hosted at the CDIAC at ORNL. The World Data Centre for Greenhouse Gases (WDCGG), part of GAW, data are hosted by the JMA. The Reseau Atmospherique de Mesure des Composes an Effet de Serre database (RAMCES) is part of IPSL.
The natural flows of carbon between the atmosphere, ocean, terrestrial ecosystems, and sediments are fairly balanced; so carbon levels would be roughly stable without human influence.[81][82] Carbon dioxide is removed from the atmosphere primarily through photosynthesis and enters the terrestrial and oceanic biospheres. Carbon dioxide also dissolves directly from the atmosphere into bodies of water (ocean, lakes, etc.), as well as dissolving in precipitation as raindrops fall through the atmosphere. When dissolved in water, carbon dioxide reacts with water molecules and forms carbonic acid, which contributes to ocean acidity. It can then be absorbed by rocks through weathering. It also can acidify other surfaces it touches or be washed into the ocean.[83]
The atmospheric carbon cycle accounts for the exchange of gaseous carbon compounds, primarily carbon dioxide (CO2), between Earth's atmosphere, the oceans, and the terrestrial biosphere. It is one of the faster components of the planet's overall carbon cycle, supporting the exchange of more than 200 billion tons of carbon (i.e. gigatons carbon or GtC) in and out of the atmosphere throughout the course of each year.[85] Atmospheric concentrations of CO2 remain stable over longer timescales only when there exists a balance between these two flows. Methane (CH4), Carbon monoxide (CO), and other human-made compounds are present in smaller concentrations and are also part of the atmospheric carbon cycle.[86]
Most greenhouse gases have both natural and human-caused sources. An exception are purely human-produced synthetic halocarbons which have no natural sources. During the pre-industrial Holocene, concentrations of existing gases were roughly constant, because the large natural sources and sinks roughly balanced. In the industrial era, human activities have added greenhouse gases to the atmosphere, mainly through the burning of fossil fuels and clearing of forests.[88][4]: 115
The major anthropogenic (human origin) sources of greenhouse gases are carbon dioxide (CO2), nitrous oxide (N 2O), methane and three groups of fluorinated gases (sulfur hexafluoride (SF 6), hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs, sulphur hexafluoride (SF6), and nitrogen trifluoride (NF3)).[89] Though the greenhouse effect is heavily driven by water vapor,[90] human emissions of water vapor are not a significant contributor to warming.
Although CFCs are greenhouse gases, they are regulated by the Montreal Protocol which was motivated by CFCs' contribution to ozone depletion rather than by their contribution to global warming. Ozone depletion has only a minor role in greenhouse warming, though the two processes are sometimes confused in the media. In 2016, negotiators from over 170 nations meeting at the summit of the United Nations Environment Programme reached a legally binding accord to phase out hydrofluorocarbons (HFCs) in the Kigali Amendment to the Montreal Protocol.[91][92][93] The use of CFC-12 (except some essential uses) has been phased out due to its ozone depleting properties.[94] The phasing-out of less active HCFC-compounds will be completed in 2030.[95]
The annual "Emissions Gap Report" by UNEP stated in 2022 that it was necessary to almost halve emissions. "To get on track for limiting global warming to 1.5°C, global annual GHG emissions must be reduced by 45 per cent compared with emissions projections under policies currently in place in just eight years, and they must continue to decline rapidly after 2030, to avoid exhausting the limited remaining atmospheric carbon budget."[96]: xvi The report commented that the world should focus on broad-based economy-wide transformations and not incremental change.[96]: xvi
In 2022, the Intergovernmental Panel on Climate Change (IPCC) released its Sixth Assessment Report on climate change. It warned that greenhouse gas emissions must peak before 2025 at the latest and decline 43% by 2030 to have a good chance of limiting global warming to 1.5 °C (2.7 °F).[97][98] Or in the words of Secretary-General of the United Nations António Guterres: "Main emitters must drastically cut emissions starting this year".[99]
Removal from the atmosphere through negative emissions
Several technologies remove greenhouse gas emissions from the atmosphere. Most widely analyzed are those that remove carbon dioxide from the atmosphere, either to geologic formations such as bio-energy with carbon capture and storage and carbon dioxide air capture,[100] or to the soil as in the case with biochar.[100] Many long-term climate scenario models require large-scale human-made negative emissions to avoid serious climate change.[101]
In the late 19th century, scientists experimentally discovered that N 2 and O 2 do not absorb infrared radiation (called, at that time, "dark radiation"), while water (both as true vapor and condensed in the form of microscopic droplets suspended in clouds) and CO2 and other poly-atomic gaseous molecules do absorb infrared radiation.[104][105] In the early 20th century, researchers realized that greenhouse gases in the atmosphere made Earth's overall temperature higher than it would be without them. The term greenhouse was first applied to this phenomenon by Nils Gustaf Ekholm in 1901.[106][107]
During the late 20th century, a scientific consensus evolved that increasing concentrations of greenhouse gases in the atmosphere cause a substantial rise in global temperatures and changes to other parts of the climate system,[108] with consequences for the environment and for human health.
Greenhouse gases exist in many atmospheres, creating greenhouse effects on Mars, Titan, and particularly in the thick atmosphere of Venus.[109] While Venus has been described as the ultimate end state of runaway greenhouse effect, such a process would have virtually no chance of occurring from any increases in greenhouse gas concentrations caused by humans,[110] as the Sun's brightness is too low and it would likely need to increase by some tens of percents, which will take a few billion years.[111]
^"Understanding methane emissions". International Energy Agency. The concentration of methane in the atmosphere is currently over two-and-a-half times greater than its pre-industrial levels
^"Climate Change Indicators: Greenhouse Gases". United States Environmental Protection Agency. 16 December 2015. Carbon dioxide's lifetime cannot be represented with a single value because the gas is not destroyed over time, but instead moves among different parts of the ocean–atmosphere–land system. Some of the excess carbon dioxide is absorbed quickly (for example, by the ocean surface), but some will remain in the atmosphere for thousands of years, due in part to the very slow process by which carbon is transferred to ocean sediments.
^IPCC, 2021: Annex VII: Glossary [Matthews, J.B.R., V. Möller, R. van Diemen, J.S. Fuglestvedt, V. Masson-Delmotte, C. Méndez, S. Semenov, A. Reisinger (eds.)]. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 2215–2256, doi:10.1017/9781009157896.022.
^ ab"Appendix 8.A"(PDF). Intergovernmental Panel on Climate Change Fifth Assessment Report. p. 731. Archived(PDF) from the original on 13 October 2017. Retrieved 6 November 2017.
^"World Data Centre for Greenhouse Gases". World Meteorological Organization Global Atmosphere Watch Programme and Japan Meteorological Agency. Retrieved 11 December 2020.
^Canadell, J. G.; Monteiro, P. M. S.; Costa, M. H.; Cotrim da Cunha, L.; Ishii, M.; Jaccard, S.; Cox, P. M.; Eliseev, A. V.; Henson, S.; Koven, C.; Lohila, A.; Patra, P. K.; Piao, S.; Rogelj, J.; Syampungani, S.; Zaehle, S.; Zickfeld, K. (2021). "Global Carbon and Other Biogeochemical Cycles and Feedbacks"(PDF). IPCC Sixth Assessment Report: Working Group 1.
^Betts (2001). "6.3 Well-mixed Greenhouse Gases". Chapter 6 Radiative Forcing of Climate Change. Working Group I: The Scientific Basis IPCC Third Assessment Report – Climate Change 2001. UNEP/GRID-Arendal – Publications. Archived from the original on 29 June 2011. Retrieved 16 October 2010.
^Harris, Daniel C. (2010). "Charles David Keeling and the Story of Atmospheric CO2 Measurements". Analytical Chemistry. 82 (19): 7865–7870. doi:10.1021/ac1001492. ISSN0003-2700. PMID20536268.
^LuAnn Dahlman (14 August 2020). "Climate change: annual greenhouse gas index". NOAA Climate.gov science news & Information for a climate smart nation. Archived from the original on 16 August 2013. Retrieved 5 September 2020.
^Prentice, I.C. (2001). "The carbon cycle and atmospheric carbon dioxide". In Houghton, J.T. (ed.). Climate change 2001: the scientific basis: contribution of Working Group I to the Third Assessment Report of the Intergouvernmental Panel on Climate Change. hdl:10067/381670151162165141.
^Falkowski, P.; Scholes, R. J.; Boyle, E.; Canadell, J.; Canfield, D.; Elser, J.; Gruber, N.; Hibbard, K.; Högberg, P.; Linder, S.; MacKenzie, F. T.; Moore III, B.; Pedersen, T.; Rosenthal, Y.; Seitzinger, S.; Smetacek, V.; Steffen, W. (2000). "The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System". Science. 290 (5490): 291–296. Bibcode:2000Sci...290..291F. doi:10.1126/science.290.5490.291. PMID11030643.
^Riebeek, Holli (16 June 2011). "The Carbon Cycle". Earth Observatory. NASA. Archived from the original on 5 March 2016. Retrieved 5 April 2018.
^Jackson, Robert B.; Abernethy, Sam; Canadell, Josep G.; Cargnello, Matteo; Davis, Steven J.; Féron, Sarah; Fuss, Sabine; Heyer, Alexander J.; Hong, Chaopeng; Jones, Chris D.; Damon Matthews, H.; O'Connor, Fiona M.; Pisciotta, Maxwell; Rhoda, Hannah M.; de Richter, Renaud (15 November 2021). "Atmospheric methane removal: a research agenda". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 379 (2210): 20200454. Bibcode:2021RSPTA.37900454J. doi:10.1098/rsta.2020.0454. ISSN1364-503X. PMC8473948. PMID34565221.
^Ekholm N (1901). "On The Variations Of The Climate Of The Geological And Historical Past And Their Causes". Quarterly Journal of the Royal Meteorological Society. 27 (117): 1–62. Bibcode:1901QJRMS..27....1E. doi:10.1002/qj.49702711702.