Let be a nuclear operator on , then is a -nuclear operator if it has a decomposition of the form
where and and
Grothendieck's trace theorem
Let denote the eigenvalues of a -nuclear operator counted with their algebraic multiplicities. If
then the following equalities hold:
and for the Fredholm determinant
See also
Nuclear operators between Banach spaces – operators on Banach spaces with properties similar to finite-dimensional operatorsPages displaying wikidata descriptions as a fallback
Literature
Gohberg, Israel; Goldberg, Seymour; Krupnik, Nahum (1991). Traces and Determinants of Linear Operators. Operator Theory Advances and Applications. Basel: Birkhäuser. p. 102. ISBN978-3-7643-6177-8.
References
^Gohberg, Israel; Goldberg, Seymour; Krupnik, Nahum (1991). Traces and Determinants of Linear Operators. Operator Theory Advances and Applications. Basel: Birkhäuser. p. 102. ISBN978-3-7643-6177-8.
^* Grothendieck, Alexander (1955). Produits tensoriels topologiques et espaces nucléaires (in French). Providence: American Mathematical Society. p. 19. ISBN0-8218-1216-5. OCLC1315788.