In differential geometry , a field in mathematics , a natural bundle is any fiber bundle associated to the s -frame bundle
F
s
(
M
)
{\displaystyle F^{s}(M)}
for some
s
≥
1
{\displaystyle s\geq 1}
. It turns out that its transition functions depend functionally on local changes of coordinates in the base manifold
M
{\displaystyle M}
together with their partial derivatives up to order at most
s
{\displaystyle s}
.[ 1]
The concept of a natural bundle was introduced by Albert Nijenhuis as a modern reformulation of the classical concept of an arbitrary bundle of geometric objects.[ 2]
Definition
Let
M
f
{\displaystyle Mf}
denote the category of smooth manifolds and smooth maps and
M
f
n
{\displaystyle Mf_{n}}
the category of smooth
n
{\displaystyle n}
-dimensional manifolds and local diffeomorphisms . Consider also the category
F
M
{\displaystyle {\mathcal {FM}}}
of fibred manifolds and bundle morphisms, and the functor
B
:
F
M
→
M
f
{\displaystyle B:{\mathcal {FM}}\to {\mathcal {M}}f}
associating to any fibred manifold its base manifold.
A natural bundle (or bundle functor) is a functor
F
:
M
f
n
→
F
M
{\displaystyle F:{\mathcal {M}}f_{n}\to {\mathcal {FM}}}
satisfying the following three properties:
B
∘
F
=
i
d
{\displaystyle B\circ F=\mathrm {id} }
, i.e.
B
(
M
)
{\displaystyle B(M)}
is a fibred manifold over
M
{\displaystyle M}
, with projection denoted by
p
M
:
B
(
M
)
→
M
{\displaystyle p_{M}:B(M)\to M}
;
if
U
⊆
M
{\displaystyle U\subseteq M}
is an open submanifold , with inclusion map
i
:
U
↪
M
{\displaystyle i:U\hookrightarrow M}
, then
F
(
U
)
{\displaystyle F(U)}
coincides with
p
M
−
1
(
U
)
⊆
F
(
M
)
{\displaystyle p_{M}^{-1}(U)\subseteq F(M)}
, and
F
(
i
)
:
F
(
U
)
→
F
(
M
)
{\displaystyle F(i):F(U)\to F(M)}
is the inclusion
p
−
1
(
U
)
↪
F
(
M
)
{\displaystyle p^{-1}(U)\hookrightarrow F(M)}
;
for any smooth map
f
:
P
×
M
→
N
{\displaystyle f:P\times M\to N}
such that
f
(
p
,
⋅
)
:
M
→
N
{\displaystyle f(p,\cdot ):M\to N}
is a local diffeomorphism for every
p
∈
P
{\displaystyle p\in P}
, then the function
P
×
F
(
M
)
→
F
(
N
)
,
(
p
,
x
)
↦
F
(
f
(
p
,
⋅
)
)
(
x
)
{\displaystyle P\times F(M)\to F(N),(p,x)\mapsto F(f(p,\cdot ))(x)}
is smooth.
As a consequence of the first condition, one has a natural transformation
p
:
F
→
B
{\displaystyle p:F\to B}
.
Finite order natural bundles
A natural bundle
F
:
M
f
n
→
M
f
{\displaystyle F:Mf_{n}\to Mf}
is called of finite order
r
{\displaystyle r}
if, for every local diffeomorphism
f
:
M
→
N
{\displaystyle f:M\to N}
and every point
x
∈
M
{\displaystyle x\in M}
, the map
F
(
f
)
x
:
F
(
M
)
x
→
F
(
N
)
f
(
x
)
{\displaystyle F(f)_{x}:F(M)_{x}\to F(N)_{f(x)}}
depends only on the jet
j
x
r
f
{\displaystyle j_{x}^{r}f}
. Equivalently, for every local diffeomorphisms
f
,
g
:
M
→
N
{\displaystyle f,g:M\to N}
and every point
x
∈
M
{\displaystyle x\in M}
, one has
j
x
r
f
=
j
x
r
g
⇒
F
(
f
)
|
F
(
M
)
x
=
F
(
g
)
|
F
(
M
)
x
.
{\displaystyle j_{x}^{r}f=j_{x}^{r}g\Rightarrow F(f)|_{F(M)_{x}}=F(g)|_{F(M)_{x}}.}
Natural bundles of order
r
{\displaystyle r}
coincide with the associated fibre bundles to the
r
{\displaystyle r}
-th order frame bundles
F
s
(
M
)
{\displaystyle F^{s}(M)}
.
A classical result by Epstein and Thurston shows that all natural bundles have finite order.[ 3]
Examples
An example of natural bundle (of first order) is the tangent bundle
T
M
{\displaystyle TM}
of a manifold
M
{\displaystyle M}
.
Other examples include the cotangent bundles, the bundles of metrics of signature
(
r
,
s
)
{\displaystyle (r,s)}
and the bundle of linear connections.[ 4]
Notes
^ Palais, Richard ; Terng, Chuu-Lian (1977), "Natural bundles have finite order", Topology , 16 : 271– 277, doi :10.1016/0040-9383(77)90008-8 , hdl :10338.dmlcz/102222
^ A. Nijenhuis (1972), Natural bundles and their general properties , Tokyo: Diff. Geom. in Honour of K. Yano, pp. 317– 334
^ Epstein, D. B. A. ; Thurston, W. P. (1979). "Transformation Groups and Natural Bundles" . Proceedings of the London Mathematical Society . s3-38 (2): 219– 236. doi :10.1112/plms/s3-38.2.219 .
^ Fatibene, Lorenzo; Francaviglia, Mauro (2003). Natural and Gauge Natural Formalism for Classical Field Theorie . Springer. doi :10.1007/978-94-017-2384-8 . ISBN 978-1-4020-1703-2 .
References
Kolář, Ivan; Michor, Peter; Slovák, Jan (1993), Natural operators in differential geometry (PDF) , Springer-Verlag, archived from the original (PDF) on 2017-03-30, retrieved 2017-08-15
Krupka, Demeter; Janyška, Josef (1990), Lectures on differential invariants , Univerzita J. E. Purkyně V Brně, ISBN 80-210-0165-8
Saunders, D.J. (1989), The geometry of jet bundles , Cambridge University Press, ISBN 0-521-36948-7