Share to:

 

PANoptosis

PANoptosis is a prominent innate immune, inflammatory, and lytic cell death pathway initiated by innate immune sensors and driven by caspases and receptor-interacting protein kinases (RIPKs) through multiprotein PANoptosome complexes.[1][2] The assembly of the PANoptosome cell death complex occurs in response to germline-encoded pattern-recognition receptors (PRRs) sensing pathogens, including bacterial, viral, and fungal infections, as well as pathogen-associated molecular patterns, damage-associated molecular patterns, and cytokines that are released during infections, inflammatory conditions, and cancer.[1][3][4][5][6][7][8][9][10][11][12][13][14][15][16] Several PANoptosome complexes, such as the ZBP1-, AIM2-, RIPK1-, and NLRC5- and NLRP12-PANoptosomes, have been characterized so far.[1][17][18][19][20][21][22][23]

Emerging genetic, molecular, and biochemical studies have identified extensive crosstalk among the molecular components across various cell death pathways in response to a variety of pathogens and innate immune triggers.[3][4] Historically, inflammatory caspase-mediated pyroptosis  and RIPK-driven necroptosis were described as two major inflammatory cell death pathways. While the PANoptosis pathway has some molecular components in common with pyroptosis and necroptosis, as well as with the non-lytic apoptosis pathway, these mechanisms are separate processes that are associated with distinct triggers, protein complexes, and execution pathways.[2] Inflammasome-dependent pyroptosis involves inflammatory caspases, including caspase-1 and caspase-11 in mice, and caspases-1, -4, and -5 in humans, and is executed by gasdermin D.[24][25][26][27][28][29][30] In contrast, necroptosis occurs via RIPK1/3-mediated MLKL activation, which is downstream of caspase-8 inhibition.[31][32][33][34] On the other hand, PANoptosis is [TDK1] driven by caspases and RIPKs and is executed by gasdermins, MLKL, NINJ1, and potentially other yet to be identified molecules cleaved by caspases.[35][36][37][38][39][40][19][21] Moreover, caspase-8 is essential for cell death in PANoptosis[41][42] but needs to be inactivated or inhibited to induce necroptosis.[43][44]

Summary of the different morphologies, mechanisms and outcomes of apoptosis, pyroptosis, necroptosis, and PANoptosis

Characteristics Apoptosis Pyroptosis Necroptosis PANoptosis
Morphology Cell lysis No Yes Yes Yes
Pore formation No Yes Yes Yes
Mechanism Caspase activation Yes Yes No Yes
Gasdermin activation No Yes No Yes
RIPK1 Yes No Yes Yes
RIPK3 No No Yes Yes
Outcome IL-1b and IL-18 release No Yes No Possible
DAMP release No Yes Yes Yes
Inflammation No Yes Yes Yes
Programmed cell death Yes Yes Yes Yes

Clinical Relevance

PANoptosis has also been implicated in inflammatory diseases, neurological diseases, and cancer. Additionally, activation of PANoptosis can clear infected cells for host defense, and it has shown preclinical promise as an anti-cancer strategy.[45][46][47][48][49][50][51][52][53][54]

Viral Infections

PANoptosis has now been identified in a variety of infections, incluiding influenza A virus, herpes simplex virus 1 (HSV1), and coronavirus. For example, PANoptosis is important for host defense during influenza infection through the ZBP1-PANoptosome and during HSV1 infections through the AIM2-PANoptosome. Studies with beta-coronaviruses have shown that IFN can induce ZBP1-mediated PANoptosis during SARS-CoV-2 infection, thereby limiting the efficacy of IFN treatment during infection and resulting in morbidity and mortality. This suggests that inhibiting ZBP1 may improve the therapeutic efficacy of IFN therapy during SARS-CoV-2 infection and possibly other inflammatory conditions where IFN-mediated cell death and pathology occur. [55][56]

Bacterial Infections

In Yersinia pseudotuberculosis infections, PANoptosis is induced through the RIPK1-PANoptosome, and the deletion of caspase-8 and RIPK3 prevents cell death. During Francisella novicida infection, PANoptosis occurs through the AIM2-PANoptosome. [5][7][17][19] PANoptosis has also been observed in Salmonella enterica and Listeria monocytogenes infections, where the combined loss of caspases and RIPK3 significantly protects cells from death. [57]

Fungal Infections

PANoptosis also occurs in fungal infections, including those caused by Candida albicans and Aspergillus fumigatus. [58]

Cancer

Treatment of cancer cells with the PANoptosis-inducing agents TNF and IFN-γ[59][6] can reduce tumor size in preclinical models.[60] The combination of the nuclear export inhibitor selinexor and IFN can also cause PANoptosis and regress tumors in preclinical models.[3][61]

Hematologic disorders

More recent evidence suggests that NLRC5- NLRP12-mediated PANoptosis is activated by heme, which can be released by red blood cell lysis during infection or inflammatory disease, in combination with specific components of infection or cellular damage. Deletion of NLRP12 protects against pathology in animal models of hemolytic disease, suggesting this could also act as a therapeutic target. Similarly, the NLRC5-PANoptosome, which also contains NLRP12, was identified as a response to NAD+ depletion downstream of heme-containing triggers. Deletion of NLRC5 protects against not only hemolytic disease models, but also colitis and HLH models.[22][23]

Fever

Additionally, PANoptosis can be induced by heat stress (HS), such as fever, during infection, and NINJ1 is a key executioner in this context. Deletion of NINJ1 in a murine model of HS and infection reduces mortality; furthermore, deleting essential PANoptosis effectors upstream completely rescues the mice from mortality, thereby identifying NINJ1 and PANoptosis effectors as potential therapeutic targets.[62]

Therapeutic Potential

The regulation of PANoptosis involves numerous PANoptosomes, which include multiple sensor molecules such as NLRP3, ZBP1, AIM2, NLRC5, and NLRP12, along with complex-forming molecules such as caspases and RIPKs. These components activate various downstream cell death executioners and play a role in disease. Therefore, modulating the components of this pathway has potential for therapy. However, excessive activation of PANoptosis can lead to inflammation, inflammatory disease, and cytokine storm syndromes.[6][11][63][21][1] Treatments that block TNF and IFN-γ to prevent PANoptosis have provided therapeutic benefit in preclinical models of cytokine storm syndromes, including cytokine shock, SARS-CoV-2 infection, sepsis, and hemophagocytic lymphohistiocytosis, suggesting the therapeutic potential of modulating this pathway.[6][64]

References

  1. ^ a b c d "St. Jude finds NLRP12 as a new drug target for infection, inflammation and hemolytic diseases". www.stjude.org. Retrieved 2024-03-07.
  2. ^ a b Pandeya, Ankit; Kanneganti, Thirumala-Devi (January 2024). "Therapeutic potential of PANoptosis: innate sensors, inflammasomes, and RIPKs in PANoptosomes". Trends in Molecular Medicine. 30 (1): 74–88. doi:10.1016/j.molmed.2023.10.001. ISSN 1471-499X. PMC 10842719. PMID 37977994.
  3. ^ a b c "Promising preclinical cancer therapy harnesses a newly discovered cell death pathway". www.stjude.org. Retrieved 2021-11-16.
  4. ^ a b "ZBP1 links interferon treatment and dangerous inflammatory cell death during COVID-19". www.stjude.org. Retrieved 2022-06-02.
  5. ^ a b "The PANoptosome: a new frontier in innate immune responses". www.stjude.org. Retrieved 2021-11-16.
  6. ^ a b c d "In the lab, St. Jude scientists identify possible COVID-19 treatment". www.stjude.org. Retrieved 2021-11-16.
  7. ^ a b "Discovering the secrets of the enigmatic caspase-6". www.stjude.org. Retrieved 2021-11-16.
  8. ^ "Breaking the dogma: Key cell death regulator has more than one way to get the job done". www.stjude.org. Retrieved 2021-11-16.
  9. ^ Kuriakose, Teneema; Man, Si Ming; Malireddi, R.K. Subbarao; Karki, Rajendra; Kesavardhana, Sannula; Place, David E.; Neale, Geoffrey; Vogel, Peter; Kanneganti, Thirumala-Devi (2016-08-05). "ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways". Science Immunology. 1 (2): aag2045. doi:10.1126/sciimmunol.aag2045. ISSN 2470-9468. PMC 5131924. PMID 27917412.
  10. ^ Karki, Rajendra; Sharma, Bhesh Raj; Lee, Ein; Banoth, Balaji; Malireddi, R.K. Subbarao; Samir, Parimal; Tuladhar, Shraddha; Mummareddy, Harisankeerth; Burton, Amanda R.; Vogel, Peter; Kanneganti, Thirumala-Devi (2020-06-18). "Interferon regulatory factor 1 regulates PANoptosis to prevent colorectal cancer". JCI Insight. 5 (12). doi:10.1172/jci.insight.136720. ISSN 2379-3708. PMC 7406299. PMID 32554929.
  11. ^ a b "Diet affects mix of intestinal bacteria and the risk of inflammatory bone disease". www.stjude.org. Retrieved 2020-09-11.
  12. ^ Malireddi, R. K. Subbarao; Karki, Rajendra; Sundaram, Balamurugan; Kancharana, Balabhaskararao; Lee, SangJoon; Samir, Parimal; Kanneganti, Thirumala-Devi (2021-07-21). "Inflammatory Cell Death, PANoptosis, Mediated by Cytokines in Diverse Cancer Lineages Inhibits Tumor Growth". ImmunoHorizons. 5 (7): 568–580. doi:10.4049/immunohorizons.2100059. ISSN 2573-7732. PMC 8522052. PMID 34290111.
  13. ^ Karki, Rajendra; Sharma, Bhesh Raj; Tuladhar, Shraddha; Williams, Evan Peter; Zalduondo, Lillian; Samir, Parimal; Zheng, Min; Sundaram, Balamurugan; Banoth, Balaji; Malireddi, R. K. Subbarao; Schreiner, Patrick; Neale, Geoffrey; Vogel, Peter; Webby, Richard; Kanneganti, Thirumala-Devi (2021-01-07). "Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes". Cell. 184 (1): 149–168.e17. doi:10.1016/j.cell.2020.11.025. ISSN 1097-4172. PMC 7674074. PMID 33278357.
  14. ^ Karki, Rajendra; Lee, SangJoon; Mall, Raghvendra; Pandian, Nagakannan; Wang, Yaqiu; Sharma, Bhesh Raj; Malireddi, Rk Subbarao; Yang, Dong; Trifkovic, Sanja; Steele, Jacob A.; Connelly, Jon P.; Vogel, Peter; Pruitt-Miller, Shondra M.; Webby, Richard; Kanneganti, Thirumala-Devi (2022-05-19). "ZBP1-dependent inflammatory cell death, PANoptosis, and cytokine storm disrupt IFN therapeutic efficacy during coronavirus infection". Science Immunology. 7 (74): eabo6294. doi:10.1126/sciimmunol.abo6294. ISSN 2470-9468. PMC 9161373. PMID 35587515.
  15. ^ Wang, Yaqiu; Pandian, Nagakannan; Han, Joo-Hui; Sundaram, Balamurugan; Lee, SangJoon; Karki, Rajendra; Guy, Clifford S.; Kanneganti, Thirumala-Devi (2022-09-28). "Single cell analysis of PANoptosome cell death complexes through an expansion microscopy method". Cellular and Molecular Life Sciences. 79 (10): 531. doi:10.1007/s00018-022-04564-z. ISSN 1420-9071. PMC 9545391. PMID 36169732.
  16. ^ Sundaram, Balamurugan; Pandian, Nagakannan; Mall, Raghvendra; Wang, Yaqiu; Sarkar, Roman; Kim, Hee Jin; Malireddi, R.K. Subbarao; Karki, Rajendra; Janke, Laura J.; Vogel, Peter; Kanneganti, Thirumala-Devi (June 2023). "NLRP12-PANoptosome activates PANoptosis and pathology in response to heme and PAMPs". Cell. 186 (13): 2783–2801.e20. doi:10.1016/j.cell.2023.05.005. PMC 10330523. PMID 37267949.
  17. ^ a b Zheng, Min; Karki, Rajendra; Vogel, Peter; Kanneganti, Thirumala-Devi (2020-04-30). "Caspase-6 Is a Key Regulator of Innate Immunity, Inflammasome Activation, and Host Defense". Cell. 181 (3): 674–687.e13. doi:10.1016/j.cell.2020.03.040. ISSN 1097-4172. PMC 7425208. PMID 32298652.
  18. ^ Christgen, Shelbi; Zheng, Min; Kesavardhana, Sannula; Karki, Rajendra; Malireddi, R. K. Subbarao; Banoth, Balaji; Place, David E.; Briard, Benoit; Sharma, Bhesh Raj; Tuladhar, Shraddha; Samir, Parimal; Burton, Amanda; Kanneganti, Thirumala-Devi (2020). "Identification of the PANoptosome: A Molecular Platform Triggering Pyroptosis, Apoptosis, and Necroptosis (PANoptosis)". Frontiers in Cellular and Infection Microbiology. 10: 237. doi:10.3389/fcimb.2020.00237. ISSN 2235-2988. PMC 7274033. PMID 32547960.
  19. ^ a b c Lee, SangJoon; Karki, Rajendra; Wang, Yaqiu; Nguyen, Lam Nhat; Kalathur, Ravi C.; Kanneganti, Thirumala-Devi (September 2021). "AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence". Nature. 597 (7876): 415–419. Bibcode:2021Natur.597..415L. doi:10.1038/s41586-021-03875-8. ISSN 1476-4687. PMC 8603942. PMID 34471287.
  20. ^ Malireddi, R. K. Subbarao; Kesavardhana, Sannula; Karki, Rajendra; Kancharana, Balabhaskararao; Burton, Amanda R.; Kanneganti, Thirumala-Devi (2020-12-11). "RIPK1 Distinctly Regulates Yersinia-Induced Inflammatory Cell Death, PANoptosis". ImmunoHorizons. 4 (12): 789–796. doi:10.4049/immunohorizons.2000097. ISSN 2573-7732. PMC 7906112. PMID 33310881.
  21. ^ a b c Sundaram, Balamurugan; Pandian, Nagakannan; Mall, Raghvendra; Wang, Yaqiu; Sarkar, Roman; Kim, Hee Jin; Malireddi, R. K. Subbarao; Karki, Rajendra; Janke, Laura J.; Vogel, Peter; Kanneganti, Thirumala-Devi (2023-06-22). "NLRP12-PANoptosome activates PANoptosis and pathology in response to heme and PAMPs". Cell. 186 (13): 2783–2801.e20. doi:10.1016/j.cell.2023.05.005. ISSN 1097-4172. PMC 10330523. PMID 37267949.
  22. ^ a b Sundaram, Balamurugan; Pandian, Nagakannan; Kim, Hee Jin; Abdelaal, Hadia M.; Mall, Raghvendra; Indari, Omkar; Sarkar, Roman; Tweedell, Rebecca E.; Alonzo, Emily Q.; Klein, Jonathon; Pruett-Miller, Shondra M.; Vogel, Peter; Kanneganti, Thirumala-Devi (June 2024). "NLRC5 senses NAD+ depletion, forming a PANoptosome and driving PANoptosis and inflammation". Cell. 187 (15): 4061–4077.e17. doi:10.1016/j.cell.2024.05.034. ISSN 0092-8674. PMC 11283362. PMID 38878777.
  23. ^ a b "St. Jude scientists solve decades long mystery of NLRC5 sensor function in cell death and disease". www.stjude.org. Retrieved 2024-06-18.
  24. ^ Man, Si Ming; Kanneganti, Thirumala-Devi (May 2015). "Regulation of inflammasome activation". Immunological Reviews. 265 (1): 6–21. doi:10.1111/imr.12296. ISSN 1600-065X. PMC 4400844. PMID 25879280.
  25. ^ Shi, Jianjin; Zhao, Yue; Wang, Kun; Shi, Xuyan; Wang, Yue; Huang, Huanwei; Zhuang, Yinghua; Cai, Tao; Wang, Fengchao; Shao, Feng (2015-10-29). "Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death". Nature. 526 (7575): 660–665. Bibcode:2015Natur.526..660S. doi:10.1038/nature15514. ISSN 1476-4687. PMID 26375003. S2CID 4407455.
  26. ^ He, Wan-ting; Wan, Haoqiang; Hu, Lichen; Chen, Pengda; Wang, Xin; Huang, Zhe; Yang, Zhang-Hua; Zhong, Chuan-Qi; Han, Jiahuai (December 2015). "Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion". Cell Research. 25 (12): 1285–1298. doi:10.1038/cr.2015.139. ISSN 1748-7838. PMC 4670995. PMID 26611636.
  27. ^ Aglietti, Robin A.; Estevez, Alberto; Gupta, Aaron; Ramirez, Monica Gonzalez; Liu, Peter S.; Kayagaki, Nobuhiko; Ciferri, Claudio; Dixit, Vishva M.; Dueber, Erin C. (2016-07-12). "GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes". Proceedings of the National Academy of Sciences of the United States of America. 113 (28): 7858–7863. Bibcode:2016PNAS..113.7858A. doi:10.1073/pnas.1607769113. ISSN 1091-6490. PMC 4948338. PMID 27339137.
  28. ^ Sborgi, Lorenzo; Rühl, Sebastian; Mulvihill, Estefania; Pipercevic, Joka; Heilig, Rosalie; Stahlberg, Henning; Farady, Christopher J.; Müller, Daniel J.; Broz, Petr; Hiller, Sebastian (2016-08-15). "GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death". The EMBO Journal. 35 (16): 1766–1778. doi:10.15252/embj.201694696. ISSN 1460-2075. PMC 5010048. PMID 27418190.
  29. ^ Kayagaki, Nobuhiko; Warming, Søren; Lamkanfi, Mohamed; Vande Walle, Lieselotte; Louie, Salina; Dong, Jennifer; Newton, Kim; Qu, Yan; Liu, Jinfeng; Heldens, Sherry; Zhang, Juan; Lee, Wyne P.; Roose-Girma, Merone; Dixit, Vishva M. (2011-10-16). "Non-canonical inflammasome activation targets caspase-11". Nature. 479 (7371): 117–121. Bibcode:2011Natur.479..117K. doi:10.1038/nature10558. ISSN 1476-4687. PMID 22002608. S2CID 2131385.
  30. ^ Martinon, Fabio; Burns, Kimberly; Tschopp, Jürg (July 2002). "The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta". Molecular Cell. 10 (2): 417–426. doi:10.1016/s1097-2765(02)00599-3. ISSN 1097-2765. PMID 12191486.
  31. ^ Zhao, Jie; Jitkaew, Siriporn; Cai, Zhenyu; Choksi, Swati; Li, Qiuning; Luo, Ji; Liu, Zheng-Gang (2012-04-03). "Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis". Proceedings of the National Academy of Sciences of the United States of America. 109 (14): 5322–5327. Bibcode:2012PNAS..109.5322Z. doi:10.1073/pnas.1200012109. ISSN 1091-6490. PMC 3325682. PMID 22421439.
  32. ^ Sun, Liming; Wang, Huayi; Wang, Zhigao; He, Sudan; Chen, She; Liao, Daohong; Wang, Lai; Yan, Jiacong; Liu, Weilong; Lei, Xiaoguang; Wang, Xiaodong (2012-01-20). "Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase". Cell. 148 (1–2): 213–227. doi:10.1016/j.cell.2011.11.031. ISSN 1097-4172. PMID 22265413.
  33. ^ Galluzzi, Lorenzo; Kepp, Oliver; Chan, Francis Ka-Ming; Kroemer, Guido (2017-01-24). "Necroptosis: Mechanisms and Relevance to Disease". Annual Review of Pathology. 12: 103–130. doi:10.1146/annurev-pathol-052016-100247. ISSN 1553-4014. PMC 5786374. PMID 27959630.
  34. ^ Dhuriya, Yogesh K.; Sharma, Divakar (2018-07-06). "Necroptosis: a regulated inflammatory mode of cell death". Journal of Neuroinflammation. 15 (1): 199. doi:10.1186/s12974-018-1235-0. ISSN 1742-2094. PMC 6035417. PMID 29980212.
  35. ^ Lukens, John R.; Gurung, Prajwal; Vogel, Peter; Johnson, Gordon R.; Carter, Robert A.; McGoldrick, Daniel J.; Bandi, Srinivasa Rao; Calabrese, Christopher R.; Vande Walle, Lieselotte; Lamkanfi, Mohamed; Kanneganti, Thirumala-Devi (2014-12-11). "Dietary modulation of the microbiome affects autoinflammatory disease". Nature. 516 (7530): 246–249. Bibcode:2014Natur.516..246L. doi:10.1038/nature13788. ISSN 1476-4687. PMC 4268032. PMID 25274309.
  36. ^ Gurung, Prajwal; Burton, Amanda; Kanneganti, Thirumala-Devi (2016-04-19). "NLRP3 inflammasome plays a redundant role with caspase 8 to promote IL-1β-mediated osteomyelitis". Proceedings of the National Academy of Sciences of the United States of America. 113 (16): 4452–4457. Bibcode:2016PNAS..113.4452G. doi:10.1073/pnas.1601636113. ISSN 1091-6490. PMC 4843439. PMID 27071119.
  37. ^ Kuriakose, Teneema; Man, Si Ming; Malireddi, R. K. Subbarao; Karki, Rajendra; Kesavardhana, Sannula; Place, David E.; Neale, Geoffrey; Vogel, Peter; Kanneganti, Thirumala-Devi (2016-08-05). "ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways". Science Immunology. 1 (2): aag2045. doi:10.1126/sciimmunol.aag2045. ISSN 2470-9468. PMC 5131924. PMID 27917412.
  38. ^ Christgen, Shelbi; Zheng, Min; Kesavardhana, Sannula; Karki, Rajendra; Malireddi, R. K. Subbarao; Banoth, Balaji; Place, David E.; Briard, Benoit; Sharma, Bhesh Raj; Tuladhar, Shraddha; Samir, Parimal; Burton, Amanda; Kanneganti, Thirumala-Devi (2020). "Identification of the PANoptosome: A Molecular Platform Triggering Pyroptosis, Apoptosis, and Necroptosis (PANoptosis)". Frontiers in Cellular and Infection Microbiology. 10: 237. doi:10.3389/fcimb.2020.00237. ISSN 2235-2988. PMC 7274033. PMID 32547960.
  39. ^ Malireddi, R. K. Subbarao; Kesavardhana, Sannula; Karki, Rajendra; Kancharana, Balabhaskararao; Burton, Amanda R.; Kanneganti, Thirumala-Devi (2020-12-11). "RIPK1 Distinctly Regulates Yersinia-Induced Inflammatory Cell Death, PANoptosis". ImmunoHorizons. 4 (12): 789–796. doi:10.4049/immunohorizons.2000097. ISSN 2573-7732. PMC 7906112. PMID 33310881.
  40. ^ Chen, Wen; Gullett, Jessica M.; Tweedell, Rebecca E.; Kanneganti, Thirumala-Devi (November 2023). "Innate immune inflammatory cell death: PANoptosis and PANoptosomes in host defense and disease". European Journal of Immunology. 53 (11): e2250235. doi:10.1002/eji.202250235. ISSN 1521-4141. PMC 10423303. PMID 36782083.
  41. ^ Malireddi, R. K. Subbarao; Bynigeri, Ratnakar R.; Mall, Raghvendra; Connelly, Jon P.; Pruett-Miller, Shondra M.; Kanneganti, Thirumala-Devi (2023-10-20). "Inflammatory cell death, PANoptosis, screen identifies host factors in coronavirus innate immune response as therapeutic targets". Communications Biology. 6 (1): 1071. doi:10.1038/s42003-023-05414-9. ISSN 2399-3642. PMC 10589293. PMID 37864059.
  42. ^ Jiang, Mingxia; Qi, Ling; Li, Lisha; Wu, Yiming; Song, Dongfeng; Li, Yanjing (2021-10-01). "Caspase-8: A key protein of cross-talk signal way in "PANoptosis" in cancer". International Journal of Cancer. 149 (7): 1408–1420. doi:10.1002/ijc.33698. ISSN 1097-0215. PMID 34028029.
  43. ^ Someda, Masataka; Kuroki, Shunsuke; Miyachi, Hitoshi; Tachibana, Makoto; Yonehara, Shin (May 2020). "Caspase-8, receptor-interacting protein kinase 1 (RIPK1), and RIPK3 regulate retinoic acid-induced cell differentiation and necroptosis". Cell Death and Differentiation. 27 (5): 1539–1553. doi:10.1038/s41418-019-0434-2. ISSN 1476-5403. PMC 7206185. PMID 31659279.
  44. ^ Rodriguez, Diego A.; Quarato, Giovanni; Liedmann, Swantje; Tummers, Bart; Zhang, Ting; Guy, Cliff; Crawford, Jeremy Chase; Palacios, Gustavo; Pelletier, Stephane; Kalkavan, Halime; Shaw, Jeremy J. P.; Fitzgerald, Patrick; Chen, Mark J.; Balachandran, Siddharth; Green, Douglas R. (2022-10-11). "Caspase-8 and FADD prevent spontaneous ZBP1 expression and necroptosis". Proceedings of the National Academy of Sciences of the United States of America. 119 (41): e2207240119. Bibcode:2022PNAS..11907240R. doi:10.1073/pnas.2207240119. ISSN 1091-6490. PMC 9565532. PMID 36191211.
  45. ^ Cai, Hantao; Lv, Mingming; Wang, Tingting (December 2023). "PANoptosis in cancer, the triangle of cell death". Cancer Medicine. 12 (24): 22206–22223. doi:10.1002/cam4.6803. ISSN 2045-7634. PMC 10757109. PMID 38069556.
  46. ^ Malireddi, R. K. Subbarao; Karki, Rajendra; Sundaram, Balamurugan; Kancharana, Balabhaskararao; Lee, SangJoon; Samir, Parimal; Kanneganti, Thirumala-Devi (2021-07-21). "Inflammatory Cell Death, PANoptosis, Mediated by Cytokines in Diverse Cancer Lineages Inhibits Tumor Growth". ImmunoHorizons. 5 (7): 568–580. doi:10.4049/immunohorizons.2100059. ISSN 2573-7732. PMC 8522052. PMID 34290111.
  47. ^ Karki, Rajendra; Sharma, Bhesh Raj; Lee, Ein; Banoth, Balaji; Malireddi, R. K. Subbarao; Samir, Parimal; Tuladhar, Shraddha; Mummareddy, Harisankeerth; Burton, Amanda R.; Vogel, Peter; Kanneganti, Thirumala-Devi (2020-06-18). "Interferon regulatory factor 1 regulates PANoptosis to prevent colorectal cancer". JCI Insight. 5 (12): e136720, 136720. doi:10.1172/jci.insight.136720. ISSN 2379-3708. PMC 7406299. PMID 32554929.
  48. ^ Sharma, Bhesh Raj; Kanneganti, Thirumala-Devi (February 2023). "Inflammasome signaling in colorectal cancer". Translational Research: The Journal of Laboratory and Clinical Medicine. 252: 45–52. doi:10.1016/j.trsl.2022.09.002. ISSN 1878-1810. PMC 9839553. PMID 36150688.
  49. ^ Mall, Raghvendra; Bynigeri, Ratnakar R.; Karki, Rajendra; Malireddi, R. K. Subbarao; Sharma, Bhesh Raj; Kanneganti, Thirumala-Devi (December 2022). "Pancancer transcriptomic profiling identifies key PANoptosis markers as therapeutic targets for oncology". NAR Cancer. 4 (4): zcac033. doi:10.1093/narcan/zcac033. ISSN 2632-8674. PMC 9623737. PMID 36329783.
  50. ^ Pan, Hongda; Pan, Jingxin; Li, Pei; Gao, Jianpeng (May 2022). "Characterization of PANoptosis patterns predicts survival and immunotherapy response in gastric cancer". Clinical Immunology (Orlando, Fla.). 238: 109019. doi:10.1016/j.clim.2022.109019. ISSN 1521-7035. PMID 35470064. S2CID 248362726.
  51. ^ He, Puxing; Ma, Yixuan; Wu, Yaolu; Zhou, Qing; Du, Huan (2023). "Exploring PANoptosis in breast cancer based on scRNA-seq and bulk-seq". Frontiers in Endocrinology. 14: 1164930. doi:10.3389/fendo.2023.1164930. ISSN 1664-2392. PMC 10338225. PMID 37455906.
  52. ^ Sun, Yanyan; Zhu, Changlian (February 2023). "Potential role of PANoptosis in neuronal cell death: commentary on "PANoptosis-like cell death in ischemia/reperfusion injury of retinal neurons"". Neural Regeneration Research. 18 (2): 339–340. doi:10.4103/1673-5374.346483. ISSN 1673-5374. PMC 9396522. PMID 35900425.
  53. ^ Qi, Zehong; Zhu, Lili; Wang, Kangkai; Wang, Nian (2023-11-15). "PANoptosis: Emerging mechanisms and disease implications". Life Sciences. 333: 122158. doi:10.1016/j.lfs.2023.122158. ISSN 1879-0631. PMID 37806654. S2CID 263775829.
  54. ^ Zhu, Peng; Ke, Zhuo-Ran; Chen, Jing-Xian; Li, Shi-Jin; Ma, Tian-Liang; Fan, Xiao-Lei (2023). "Advances in mechanism and regulation of PANoptosis: Prospects in disease treatment". Frontiers in Immunology. 14: 1120034. doi:10.3389/fimmu.2023.1120034. ISSN 1664-3224. PMC 9948402. PMID 36845112.
  55. ^ Oh, SuHyeon; Lee, SangJoon (2023). "Recent advances in ZBP1-derived PANoptosis against viral infections". Frontiers in Immunology. 14: 1148727. doi:10.3389/fimmu.2023.1148727. ISSN 1664-3224. PMC 10228733. PMID 37261341.
  56. ^ Schifanella, Luca; Anderson, Jodi; Wieking, Garritt; Southern, Peter J.; Antinori, Spinello; Galli, Massimo; Corbellino, Mario; Lai, Alessia; Klatt, Nichole; Schacker, Timothy W.; Haase, Ashley T. (2023-05-29). "The Defenders of the Alveolus Succumb in COVID-19 Pneumonia to SARS-CoV-2 and Necroptosis, Pyroptosis, and PANoptosis". The Journal of Infectious Diseases. 227 (11): 1245–1254. doi:10.1093/infdis/jiad056. ISSN 1537-6613. PMC 10226656. PMID 36869698.
  57. ^ Christgen, Shelbi; Zheng, Zhen; Kesavardhana, Sannula; Karki, Rajendra; Malireddi, R K Subbarao; Banoth, Balaji; Place, David E; Sharma, Bhesh Raj; Tuladhar, Shraddha; Samir, Parimal; Burton, Amanda; Kanneganti, Thirumala-Devi (2020). "Identification of the PANoptosome: A Molecular Platform Triggering Pyroptosis, Apoptosis, and Necroptosis (PANoptosis)". Frontiers in Cellular and Infection Microbiology. 29:10:237.: 237. doi:10.3389/fcimb.2020.00237. PMC 7274033. PMID 32547960.
  58. ^ Banoth, Balaji; Tuladhar, Shraddha; Karki, Rajendra; Sharma, Bhesh Raj; Briard, Benoit; Kesavardhana, Sannula; Burton, Amanda; Kanneganti, Thirumala-Devi (2020). "ZBP1 promotes fungi-induced inflammasome activation and pyroptosis, apoptosis, and necroptosis (PANoptosis)". J Biol Chem. 52 (295): 18276–18283. doi:10.1074/jbc.RA120.015924. PMC 7939383. PMID 33109609.
  59. ^ Karki, Rajendra; Sharma, Bhesh Raj; Tuladhar, Shraddha; Williams, Evan Peter; Zalduondo, Lillian; Samir, Parimal; Zheng, Min; Sundaram, Balamurugan; Banoth, Balaji; Malireddi, R. K. Subbarao; Schreiner, Patrick; Neale, Geoffrey; Vogel, Peter; Webby, Richard; Jonsson, Colleen Beth (2021-01-07). "Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes". Cell. 184 (1): 149–168.e17. doi:10.1016/j.cell.2020.11.025. ISSN 1097-4172. PMC 7674074. PMID 33278357.
  60. ^ Subbarao Malireddi, R.K.; Karki, Rajendra; Sundaram, Balamurugan; Kancharana, Balabhaskararao; Lee, SangJoon; Samir, Parimal; Kanneganti, Thirumala-Devi (2021-07-21). "Inflammatory cell death, PANoptosis, mediated by cytokines in diverse cancer lineages inhibits tumor growth". ImmunoHorizons. 5 (7): 568–580. doi:10.4049/immunohorizons.2100059. ISSN 2573-7732. PMC 8522052. PMID 34290111.
  61. ^ Karki, Rajendra; Sundaram, Balamurugan; Sharma, Bhesh Raj; Lee, SangJoon; Malireddi, R.K. Subbarao; Nguyen, Lam Nhat; Christgen, Shelbi; Zheng, Min; Wang, Yaqiu; Samir, Parimal; Neale, Geoffrey; Vogel, Peter; Kanneganti, Thirumala-Devi (2021-10-19). "ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis". Cell Reports. 37 (3): 109858. doi:10.1016/j.celrep.2021.109858. ISSN 2211-1247. PMC 8853634. PMID 34686350.
  62. ^ Han, Joo-Hui; Karki, Rajendra; Malireddi, R. K. Subbarao; Mall, Raghvendra; Sarkar, Roman; Sharma, Bhesh Raj; Klein, Jonathon; Berns, Harmut; Pisharath, Harshan; Pruett-Miller, Shondra M.; Bae, Sung-Jin; Kanneganti, Thirumala-Devi (2024-02-26). "NINJ1 mediates inflammatory cell death, PANoptosis, and lethality during infection conditions and heat stress". Nature Communications. 15 (1): 1739. Bibcode:2024NatCo..15.1739H. doi:10.1038/s41467-024-45466-x. ISSN 2041-1723. PMC 10897308. PMID 38409108.
  63. ^ Karki, Rajendra; Kanneganti, Thirumala-Devi (August 2021). "The 'Cytokine Storm': molecular mechanisms and therapeutic prospects". Trends in Immunology. 42 (8): 681–705. doi:10.1016/j.it.2021.06.001. ISSN 1471-4906. PMC 9310545. PMID 34217595.
  64. ^ Karki, Rajendra; Sharma, Bhesh Raj; Tuladhar, Shraddha; Williams, Evan Peter; Zalduondo, Lillian; Samir, Parimal; Zheng, Min; Sundaram, Balamurugan; Banoth, Balaji; Malireddi, R.K. Subbarao; Schreiner, Patrick; Neale, Geoffrey; Vogel, Peter; Webby, Richard; Jonsson, Colleen Beth (2021-01-07). "Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes". Cell. 184 (1): 149–168.e17. doi:10.1016/j.cell.2020.11.025. ISSN 0092-8674. PMC 7674074. PMID 33278357.
Kembali kehalaman sebelumnya