Axiom I2: There is a nontrivial elementary embedding of into a transitive class that includes where is the first fixed point above the critical point.
Axiom I1: There is a nontrivial elementary embedding of into itself.
Axiom I0: There is a nontrivial elementary embedding of into itself with critical point below .
These are essentially the strongest known large cardinal axioms not known to be inconsistent in ZFC; the axiom for Reinhardt cardinals is stronger, but is not consistent with the axiom of choice.
If is the elementary embedding mentioned in one of these axioms and is its critical point, then is the limit of as goes to . More generally, if the axiom of choice holds, it is provable that if there is a nontrivial elementary embedding of into itself then is either a limit ordinal of cofinality or the successor of such an ordinal.
The axioms I0, I1, I2, and I3 were at first suspected to be inconsistent (in ZFC) as it was thought possible that Kunen's inconsistency theorem that Reinhardt cardinals are inconsistent with the axiom of choice could be extended to them, but this has not yet happened and they are now usually believed to be consistent.
Every I0 cardinal (speaking here of the critical point of ) is an I1 cardinal.
Every I1 cardinal (sometimes called ω-huge cardinals) is an I2 cardinal and has a stationary set of I2 cardinals below it.
Every I2 cardinal is an I3 cardinal and has a stationary set of I3 cardinals below it.
Every I3 cardinal has another I3 cardinal above it and is an -huge cardinal for every .
Axiom I1 implies that (equivalently, ) does not satisfy V=HOD. There is no set definable in (even from parameters and ordinals ) with cofinal in and , that is, no such witnesses that is singular. And similarly for Axiom I0 and ordinal definability in (even from parameters in ). However globally, and even in ,[1] V=HOD is relatively consistent with Axiom I1.
Notice that I0 is sometimes strengthened further by adding an "Icarus set", so that it would be
Axiom Icarus set: There is a nontrivial elementary embedding of into itself with the critical point below .
The Icarus set should be in but chosen to avoid creating an inconsistency. So for example, it cannot encode a well-ordering of . See section 10 of Dimonte for more details.
Woodin defined a sequence of sets for use as Icarus sets.[2]
Notes
^Consistency of V = HOD With the Wholeness Axiom, Paul Corazza, Archive for Mathematical Logic, No. 39, 2000.
Gaifman, Haim (1974), "Elementary embeddings of models of set-theory and certain subtheories", Axiomatic set theory, Proc. Sympos. Pure Math., vol. XIII, Part II, Providence R.I.: Amer. Math. Soc., pp. 33–101, MR0376347