In 2019, Li won the Sandra K. Masur Senior Leadership Award from The American Society for Cell Biology (ASCB).[12] This award recognizes individuals for scientific achievements and a record of active leadership in mentoring women and individuals from underrepresented groups in their scientific careers.[13] In 2024, she was elected as the ASCB president of Year 2026. [14]
To understand the pathways that control cell motility,[17] tissue morphogenesis,[18] and neuronal development, Li monitors both physical and biochemical reactions that overlap spatially and change rapidly, but occur only locally within a complex environment.[16] Her broad goal is to understand how eukaryotic cells establish their distinct morphology and organization in order to carry out their specialized functions with applications in development and cancer.[19][20][21] Specifically, how eukaryotic cells generate pattern through self-organization with or without environmental cues, accomplish division or motility through coordinated structural rearrangements and force production,[22] and, when challenged with stress and roadblocks, evolve innovative solutions to main vitality and functionality.[23] A key part of her research is exploring how the ability to evolve is built into cellular systems and how that ability gives rise to a cell's properties. Li has published several seminal papers on the impact of aneuploidy on cellular fitness, gene expression, stress adaptation, and genome instability. As aneuploidy and chromosome instability are hallmarks of cancer, her results on how aneuploidy fuels the evolution of cellular adaptation and drug resistance have direct relevance to the understanding of cancer evolution and disease progression. Li has also studied the molecular mechanisms that lead to oocyte maturation,[24][25] which can contribute to “advances in the treatment of infertility and the field of regenerative medicine.”[26]
Li is one of the pioneers using state-of-the-art microscopy technologies to study aging and protein homeostasis (proteostasis), and uncovered some fundamental aspects of protein aggregation in cells. Her laboratory discovered endoplasmic reticulum (ER) and mitochondria-based retention of protein aggregates during aggregate formation and cell division [39] and mitochondrial import of aggregation-prone proteins.[40] Her lab also discovered that (TDP-43) protein aggregation directly occurs at ER-exit sites to impair ER-to-Golgi transport. [41]
Li, R. "Actin-based chromosome movement in cell division." In Actin-based motility, Springer-London, Edited by Mary France-Carlier. In press.
Slaughter BD, Unruh JR, Li R. "Examination of dynamic protein interactions in yeast using live-cell fluorescence fluctuation microscopy and spectroscopy." In Methods in Molecular Biology, Springer-London. In press.
2010, R. Li and B. Bowerman. "Symmetry breaking in biology." In Symmetry Breaking in Biology, Cold Spring Harbor Laboratory Press. April 1, 2010.
2010, Slaughter BD, Smith SE, Li R. "Cell polarity in the budding yeast Saccharomyces cerevisiae." In Symmetry Breaking in Biology, Cold Spring Harbor Laboratory Press. April 1, 2010.
2010, N. Pavelka, G. Rancati, J. Zhu, WD. Bradford, A. Saraf, L. Florens, B.W. Sanderson, G.L. Hattem, R. Li. Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast, in: Nature. Vol. 468, nº 7321; 321–325.
2008, R. Li, G.G. Gundersen. Beyond polymer polarity: how the cytoskeleton builds a polarized cell, in: Nature Reviews Molecular Cell Biology. Vol. 9, nº 11; 860–873.
2005, O. Brandman, J.E. Ferrell, R. Li, T. Meyer. Interlinked fast and slow positive feedback loops drive reliable cell decisions, in: Science. Vol. 310, nº 5747; 496–498.
2003, R. Wedlich-Soldner, S. Altschuler, L. Wu, R. Li. Spontaneous cell polarization through actomyosin-based delivery of the Cdc42 GTPase, in: Science. Vol. 299, nº 5610; 1231–1235.
2001, T. Uruno, J. Liu, P. Zhang, Y. Fan, C. Egile, R. Li, S.C. Mueller, and X. Zhan. Activation of Arp2/3 complex-mediated actin polymerization by cortactin, in: Nature Cell Biology. Vol. 3, nº 3; 259–266.
1999, C. Egile, T.P. Loisel, V. Laurent, R. Li, D. Pantaloni, P.J. Sansonetti, M.F. Carlier. Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility, in: The Journal of Cell Biology. Vol. 146, nº 6; 1319–1332.
1998, with J. Lippincott. Sequential assembly of myosin II, an IQGAP-like protein, and filamentous actin to a ring structure involved in budding yeast cytokinesis, in: The Journal of Cell Biology. Vol. 140, nº 2; 355–366.
1991, R. Li, A.W. Murray. Feedback control of mitosis in budding yeast, in: Cell. Vol. 66, nº 3; 519–531.