Share to:

 

Superior longitudinal fasciculus

Superior longitudinal fasciculus
Lateral surface of left cerebral hemisphere. Some of major association tracts are depicted. Superior longitudinal fasciculus is at center, in red.
Diagram showing principal systems of association fibers in the cerebrum. (Sup. longitudinal fasc. labeled at center top.)
Details
Identifiers
Latinfasciculus longitudinalis superior cerebri
NeuroNames2080
TA98A14.1.09.557
TA25599
FMA77631
Anatomical terms of neuroanatomy

The superior longitudinal fasciculus (SLF) is an association tract in the brain that is composed of three separate components.[1][2] It is present in both hemispheres and can be found lateral to the centrum semiovale and connects the frontal, occipital, parietal, and temporal lobes.[2] This bundle of tracts (fasciculus) passes from the frontal lobe through the operculum to the posterior end of the lateral sulcus where they either radiate to and synapse on neurons in the occipital lobe, or turn downward and forward around the putamen and then radiate to and synapse on neurons in anterior portions of the temporal lobe.[citation needed]

The SLF is composed of three distinct components SLF I, SLF II, and SLF III.[2][1]

SLF I

SLF I is the dorsal component and originates in the superior and medial parietal cortex, passes around the cingulate sulcus and in the superior parietal and frontal white matter, and terminates in the dorsal and medial cortex of the frontal lobe (Brodmann 6, 8, and 9) and in the supplementary motor cortex (M II).[3][1]

SLF I connects to the superior parietal cortex which encodes locations of body parts in a body-centric coordinate system and with M II and dorsal premotor cortex.[1] This suggests the SLF I is involved with regulating motor behavior, especially conditional associative tasks which select among competing motor tasks based on conditional rules.

SLF II

SLF II is the major component of SLF and originates in the caudal-inferior parietal cortex and terminates in the dorsolateral prefrontal cortex (Brodmann 6, 8 and 46).

SLF II connects to the caudal inferior parietal cortex which controls spatial attention and visual and oculomotor functions. This suggests the SLF II provides the prefrontal cortex with parietal cortex information regarding perception of visual space. Since these bundles are bi-directional, working memory (Brodmann 46) in the prefrontal cortex may provide the parietal cortex with information to focus spatial attention and regulate selection and retrieval of spatial information.

Some research suggests a larger SLE II volumes in the "right hemisphere corresponded to faster detection times in the left hemifield". An hemispheric specialization that "is associated with an unbalanced speed of visuospatial processing along the SLF II. This lateralization may be predictive of visuospatial recovery in patients with lesions of parietofrontal networks."[4]

SLF III

SLF III is the ventral component and originates in the supramarginal gyrus (rostral portion of the inferior parietal lobe) and terminates in the ventral premotor and prefrontal cortex (Brodmann 6, 44, and 46).

SLF III connects the rostral inferior parietal cortex which receives information from the ventral precentral gyrus. This suggests that the SLF III transfers somatosensory information, such as language articulation, between the ventral premotor cortex, Brodmann 44 (pars opercularis), the supramarginal gyrus (Brodmann 40), and the laterial inferior prefrontal cortex working memory (Brodmann 46).

References

  1. ^ a b c d Makris, N.; Kennedy, D. N.; McInerney, S.; Sorensen, A. G.; Wang, R.; Caviness, V. S.; Pandya, D. N. (2005-06-01). "Segmentation of Subcomponents within the Superior Longitudinal Fascicle in Humans: A Quantitative, In Vivo, DT-MRI Study". Cerebral Cortex. 15 (6): 854–869. doi:10.1093/cercor/bhh186. ISSN 1047-3211. PMID 15590909.
  2. ^ a b c Wang, Xuhui; Pathak, Sudhir; Stefaneanu, Lucia; Yeh, Fang-Cheng; Li, Shiting; Fernandez-Miranda, Juan C. (2016-05-01). "Subcomponents and connectivity of the superior longitudinal fasciculus in the human brain". Brain Structure & Function. 221 (4): 2075–2092. doi:10.1007/s00429-015-1028-5. ISSN 1863-2661. PMID 25782434. S2CID 253981649.
  3. ^ Kamali, A; Flanders, AE; Brody, J; Hunter, JV; Hasan, KM (2014). "Tracing superior longitudinal fasciculus connectivity in the human brain using high resolution diffusion tensor tractography". Brain Struct Funct. 219 (1): 269–81. doi:10.1007/s00429-012-0498-y. PMC 3633629. PMID 23288254.
  4. ^ de Schotten, MT; Dell’Acqua, F; Forkel, SJ; Simmons, A; Vergani, F; Murphy, DGM; Catani, M (2011). "A lateralized brain network for visuospatial attention". Nature Neuroscience. 14 (10): 1245–1246. doi:10.1038/nn.2905. PMID 21926985. S2CID 483275.
  • Atlas image: n1a5p6 at the University of Michigan Health System - "Dissection of the Left Hemisphere"
Kembali kehalaman sebelumnya