Weil–Châtelet group
In arithmetic geometry , the Weil–Châtelet group or WC-group of an algebraic group such as an abelian variety A defined over a field K is the abelian group of principal homogeneous spaces for A , defined over K . John Tate (1958 ) named it for François Châtelet (1946 ) who introduced it for elliptic curves , and André Weil (1955 ), who introduced it for more general groups. It plays a basic role in the arithmetic of abelian varieties , in particular for elliptic curves, because of its connection with infinite descent .
It can be defined directly from Galois cohomology , as
H
1
(
G
K
,
A
)
{\displaystyle H^{1}(G_{K},A)}
, where
G
K
{\displaystyle G_{K}}
is the absolute Galois group of K . It is of particular interest for local fields and global fields , such as algebraic number fields . For K a finite field , Friedrich Karl Schmidt (1931 ) proved that the Weil–Châtelet group is trivial for elliptic curves, and Serge Lang (1956 ) proved that it is trivial for any connected algebraic group.
See also
The Tate–Shafarevich group of an abelian variety A defined over a number field K consists of the elements of the Weil–Châtelet group that become trivial in all of the completions of K .
The Selmer group , named after Ernst S. Selmer , of A with respect to an isogeny
f
: : -->
A
→ → -->
B
{\displaystyle f\colon A\to B}
of abelian varieties is a related group which can be defined in terms of Galois cohomology as
S
e
l
(
f
)
(
A
/
K
)
=
⋂ ⋂ -->
v
k
e
r
(
H
1
(
G
K
,
k
e
r
(
f
)
)
→ → -->
H
1
(
G
K
v
,
A
v
[
f
]
)
/
i
m
(
κ κ -->
v
)
)
{\displaystyle \mathrm {Sel} ^{(f)}(A/K)=\bigcap _{v}\mathrm {ker} (H^{1}(G_{K},\mathrm {ker} (f))\rightarrow H^{1}(G_{K_{v}},A_{v}[f])/\mathrm {im} (\kappa _{v}))}
where A v [f ] denotes the f -torsion of A v and
κ κ -->
v
{\displaystyle \kappa _{v}}
is the local Kummer map
B
v
(
K
v
)
/
f
(
A
v
(
K
v
)
)
→ → -->
H
1
(
G
K
v
,
A
v
[
f
]
)
{\displaystyle B_{v}(K_{v})/f(A_{v}(K_{v}))\rightarrow H^{1}(G_{K_{v}},A_{v}[f])}
.
References
Cassels, John William Scott (1962), "Arithmetic on curves of genus 1. III. The Tate–Šafarevič and Selmer groups", Proceedings of the London Mathematical Society , Third Series, 12 : 259–296, doi :10.1112/plms/s3-12.1.259 , ISSN 0024-6115 , MR 0163913
Cassels, John William Scott (1991), Lectures on elliptic curves , London Mathematical Society Student Texts, vol. 24, Cambridge University Press , doi :10.1017/CBO9781139172530 , ISBN 978-0-521-41517-0 , MR 1144763
Châtelet, François (1946), "Méthode galoisienne et courbes de genre un", Annales de l'Université de Lyon Sect. A. (3) , 9 : 40–49, MR 0020575
Hindry, Marc ; Silverman, Joseph H. (2000), Diophantine geometry: an introduction , Graduate Texts in Mathematics, vol. 201, Berlin, New York: Springer-Verlag , ISBN 978-0-387-98981-5
Greenberg, Ralph (1994), "Iwasawa Theory and p-adic Deformation of Motives", in Serre, Jean-Pierre ; Jannsen, Uwe; Kleiman, Steven L. (eds.), Motives , Providence, R.I.: American Mathematical Society , ISBN 978-0-8218-1637-0
"Weil-Châtelet group" , Encyclopedia of Mathematics , EMS Press , 2001 [1994]
Lang, Serge (1956), "Algebraic groups over finite fields", American Journal of Mathematics , 78 (3): 555–563, doi :10.2307/2372673 , ISSN 0002-9327 , JSTOR 2372673 , MR 0086367
Lang, Serge ; Tate, John (1958), "Principal homogeneous spaces over abelian varieties", American Journal of Mathematics , 80 (3): 659–684, doi :10.2307/2372778 , ISSN 0002-9327 , JSTOR 2372778 , MR 0106226
Schmidt, Friedrich Karl (1931), "Analytische Zahlentheorie in Körpern der Charakteristik p", Mathematische Zeitschrift , 33 : 1–32, doi :10.1007/BF01174341 , ISSN 0025-5874
Shafarevich, Igor R. (1959), "The group of principal homogeneous algebraic manifolds", Doklady Akademii Nauk SSSR (in Russian), 124 : 42–43, ISSN 0002-3264 , MR 0106227 English translation in his collected mathematical papers.
Tate, John (1958), WC-groups over p-adic fields , Séminaire Bourbaki; 10e année: 1957/1958, vol. 13, Paris: Secrétariat Mathématique, MR 0105420
Weil, André (1955), "On algebraic groups and homogeneous spaces", American Journal of Mathematics , 77 (3): 493–512, doi :10.2307/2372637 , ISSN 0002-9327 , JSTOR 2372637 , MR 0074084