Espectroscopía resuelta en el tiempoEn física y química física, la espectroscopia resuelta en el tiempo (en algunos países hispanohablantes, también con acento gráfico: espectroscopía) es el estudio de procesos dinámicos que transcurren en tiempos generalmente muy cortos, en materiales o compuestos químicos, por medio de técnicas espectroscópicas. Muy a menudo, se estudian los procesos que ocurren después de la iluminación de un material, pero en principio, la técnica puede aplicarse a cualquier proceso que conduce a un cambio en las propiedades de un material. Con la ayuda de los láseres pulsados, es posible estudiar los procesos que ocurren en escalas de tiempo de apenas 10-14 segundos, o unos cuantos attosegundos.[1] La radiación de excitación cubre una amplia gama espectral, de 250 nm hasta 1500 nm. La muestra se monta generalmente en un criostato de helio líquido para temperaturas entre 5 y 300 K. La intensidad de fotoluminiscencia emitida es recogida por una óptica estándar o un microscopio y se dispersa en un monocromador. Para la detección, se puede utilizar una cámara con fotocátodo que puede detectar simultáneamente la señal de fotoluminiscencia resuelta en el tiempo y espectralmente.[2] Tipos de espectroscopía resuelta en el tiempoExisten diferentes tipos de espectroscopia resuelta en el tiempo: Espectroscopia de absorción transitoriaLa espectroscopia de absorción transitoria es una extensión de la espectroscopia de absorción. Aquí, la absorbancia de una muestra, para una longitud de onda particular o para un rango de longitudes de onda, se mide en función del tiempo después de la excitación por un destello de luz. En un experimento típico, tanto la luz de excitación ("bomba") como la luz para medir la absorbancia ('sonda') son generados por un láser pulsado. Si el proceso en estudio es lento, entonces el tiempo de resolución se puede obtener con un haz de prueba continuo (es decir, no pulsado) y las técnicas convencionales de espectrofotometría. Ejemplos de procesos que se pueden estudiar:
Otras técnicas de pulsos múltiplesLa espectroscopia transitoria, como se mencionó anteriormente, es una técnica en la que intervienen dos pulsos. Hay muchas más técnicas que emplean dos o más pulsos, tales como:
La interpretación de los datos experimentales de estas técnicas suele ser mucho más complicada que en la espectroscopia de absorción transitoria. La resonancia magnética nuclear y la resonancia de espín electrónico se han implementado con múltiples técnicas de pulso, aunque con ondas de radio y microondas en lugar de luz visible. Espectroscopia de infrarrojo resuelta en el tiempoEn la espectroscopia de infrarrojo resuelta en el tiempo (Time-Resolved InfraRed, TRIR) también emplea una metodología de dos pulsos. El pulso de excitación o bombeo está generalmente en la región UV y se genera a menudo por un láser de Nd-YAG de alta potencia, mientras que el haz de prueba se encuentra en la región infrarroja. Esta técnica opera en la actualidad hasta el régimen de tiempo de picosegundos y supera a la absorción transitoria y la espectroscopia de emisión, proporcionando información estructural sobre la cinética del estado excitado de ambos estados oscuros y emisivo. Espectroscopia de fluorescencia resuelta en el tiempoLa espectroscopia de fluorescencia resuelta en el tiempo es una extensión de la espectroscopia de fluorescencia. En este caso, la fluorescencia de una muestra se controla en función del tiempo posterior a la excitación mediante un destello o pulso de luz. El tiempo de resolución puede ser obtenido de varias maneras, dependiendo de la sensibilidad necesaria y el tiempo de resolución:[3]
Enlaces externos
Referencias
|