Share to:

 

Punto de acumulación

En topología, el concepto de punto de acumulación (también denominado punto límite o punto de aglomeración [1]​) de un conjunto en un espacio captura la noción informal de punto que está arbitrariamente próximo a otros puntos del conjunto sin pertenecer necesariamente a él. Informalmente hablando, un punto de acumulación de un conjunto S en un espacio topológico X es un punto x en X que puede ser aproximado por puntos de S distintos a x tanto como se desee.

Este concepto generaliza la noción de límite y puede ser base de conceptos como conjunto cerrado y cerradura topológica. Ciertamente, un conjunto es cerrado si y solo si contiene todos sus puntos de acumulación, y la operación topológica de cerradura puede considerarse como el resultado de agregar a un conjunto todos sus puntos de acumulación.

Definición

Sea un espacio topológico y S un subconjunto de X. Diremos que x es un punto de acumulación de S si y solamente si para cualquier subconjunto abierto U del espacio X que contenga al punto x, se tiene que .

Ejemplos
  • El intervalo tiene como puntos de acumulación a todos los puntos del intervalo .
  • Sin embargo, cualquier número es un punto de acumulación de un conjunto finito en la topología trivial de los números reales.
  • no tiene puntos de acumulación cuando se considera como subconjunto de en la topología estándar. Por lo tanto, cada punto en es aislado.

Propiedades

Caracterización de los puntos de acumulación

x es un punto límite de S si y solo si está en la cerradura de S \ {x}.

'Demostración: Partamos del hecho de que un punto está en la cerradura de un conjunto si y solo si toda vecindad del punto tiene intersección no vacía con el conjunto. Ahora, x es un punto límite de S ssi toda vecindad de x contiene un punto de S distinto a x ssi toda vecindad de x contiene un punto de S \ {x} sii x está en la cerradura de S \ {x}.

  • Si usamos L(S) para denotar el conjunto de puntos límite de S, entonces tenemos la siguiente caracterización de la cerradura de S: La cerradura de S es igual a la unión de S y L(S).
    • Demostración: Supongamos que x está en la cerradura de S. Si x está en S, está demostrado. Si x no está en S, entonces toda vecindad de x contiene un punto de S, y este punto no puede ser x. En otras palabras, x es un punto límite de S y x está en L(S).

Recíprocamente, si x está en S, entonces toda vecindad de x claramente tiene intersección no vacía con S, así que x está en la cerradura de S. Si x está en L(S), entonces toda vecindad de x contiene un punto de S (distinto de x), así que x está en la cerradura de S. Esto completa la prueba.

  • Un corolario de este resultado nos da una caracterización de los conjuntos cerrado: un conjunto S es cerrado si y solo si este contiene a todos sus puntos límite.

Caracterización de conjuntos cerrados

  • Teorema: es un conjunto cerrado si , donde es el conjunto de todos los puntos de acumulación de .

Válido para cualquier espacio (métricos, topológicos, etc).

Otras propiedades

  • Ningún punto aislado es el punto de límite de un conjunto que no lo contenga.
  • Un espacio X es discreto si y solo si ningún subconjunto de X tiene puntos límites.
  • Si un espacio X tiene la topología trivial y S es un subconjunto de X con más de un elemento, entonces todos los elementos de X son puntos límites de S.

Véase también

Referencias

  1. Kelley: Topología general, Eudeba, Buenos Aires

Bibliografía

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya