El sistema ternario, también llamado sistema ternario desbalanceado,[1][2] es un sistema de numeración posicional en que todas las cantidades se representan con base 3, es decir, utilizando sólo tres cifras: 0, 1 y 2.
Comparación con sistema binario y decimal
Ternario
|
0 |
1 |
2 |
10 |
11 |
12 |
20 |
21 |
22 |
100
|
Binario
|
0 |
1 |
10 |
11 |
100 |
101 |
110 |
111 |
1000 |
1001
|
Decimal
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9
|
|
Ternario
|
101 |
102 |
110 |
111 |
112 |
120 |
121 |
122 |
200
|
201
|
Binario
|
1010 |
1011 |
1100 |
1101 |
1110 |
1111 |
10000 |
10001 |
10010 |
10011
|
Decimal
|
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19
|
|
Ternario
|
202 |
210 |
211 |
212 |
220 |
221 |
222 |
1000 |
1001 |
1002
|
Binario
|
10100 |
10101 |
10110 |
10111 |
11000 |
11001 |
11010 |
11011 |
11100 |
11101
|
Decimal
|
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29
|
Referencias
- ↑ Bellotti, Marianne (9 de junio de 2018). «The Land Before Binary» (html). Medium (en inglés). Archivado desde el original el 10 de junio de 2018. Consultado el 26 de junio de 2018. «(FYI I’m going to reverse the conventional order so that the 2⁰ is the left most throughout this post) (...) Once you think about including a third state into the mix there are actually a couple of different ways of doing ternary. In addition to {-1,0,1} you could also do {0,1,2} (unbalance ternary) at which point the number 11 would be 2-0-1 (1+1+9). Or you might prefer fractions {0, 1/2, 1}».
- ↑ Buntine, Andrew (16 de noviembre de 2016). «The Balanced Ternary Machines of Soviet Russia» (html). Dev To (en inglés). Archivado desde el original el 21 de noviembre de 2016. Consultado el 26 de junio de 2018. «Ternary, or base-3, is a number system in which there are three possible values: 0 , 1 and 2 . In balanced ternary, these three possibilities are -1, 0 and +1; often simplified to -, 0 and +, respectively. So, in its balanced form, we can think of the ternary values as being "balanced" around the mid-point of 0.»