Cauchy[1]-Schwarzi[2] võrratus (ka Cauchy-Schwarzi-Bunjakovski[3] võrratus) on võrratus, mis ütleb, et vektorite skalaarkorrutise moodul pole suurem vektorite pikkuste (normide) korrutisest:
kus ja vastavalt vektorite skalaarkorrutis ja pikkused ning V on mõni skalaarkorrutisega vektorruum. Võrratuse asemel on võrdus parajasti siis, kui x ja y on lineaarselt sõltuvad.
Erijuhud
- Eukleidilises ruumis kehtib:
- .
- Ruutintegreeruvate funktsioonide ruumis
Tõestuse idee
Vaatame suurust , kus on suvaline kompleksarv ja x ja y vektorid. Trikk tõestuse juures on moodustada vektor ja arvutada selle vektori pikkus, mis ei saa olla negatiivne:
Sellest võrratusest saab tuletada Cauchy-Schwarzi võrratuse, kui leiame sobiva väärtuse. Valime väärtuse nii, et vektori pikkus võimalikult väike oleks. Sobivaks väärtuseks osutub
Asendades esimesse võrratusse näeme, et
Korrutades saadud võrratuse läbi vektori y pikkuse ruuduga ja viies skalaarkorrutise teisele poole võrratuse märki, leiame, et
millest ruutjuure võtmine annab Cauchy-Schwarzi võrratuse. Märkigem, et võrdus realiseerub parajasti siis, kui , mis tähendab, et x = - y ehk x ja y on lineaarselt sõltuvad.
Vaata ka
Märkmed
Välislingid