Elektromagnetiline kiirgusElektromagnetkiirgus ehk elektromagnetkiirgus (kutsutakse ka elektromagnetlaineteks) on laetud osakeste kiiratav energia, mis kandub ruumis edasi lainena, milles elektri- ja magnetvälja komponendid võnguvad teineteise ja laine levimise suuna suhtes risti, olles üksteisega samas faasis. Elektromagnetlaine levib vaakumis valguse kiirusel, milleks on c = 299 792 458 m/s (kuna meeter on defineeritud valguse kiiruse järgi, siis on see arv täpne). Elektromagnetkiirgus on elektromagnetvälja erijuht. Kui elektrilaeng liigub, tekitab ta enda ümber elektromagnetvälja, aga kiirendusega liikuva laengu ümber tekib lisaks elektromagnetkiirgus, mis kannab allikast energiat eemale. Elektromagnetlained võivad vabalt levida (kiirguda) ilma neid tekitanud liikuvate laengute jätkuva mõjuta, kui nad on saavutanud nendest laengutest piisava kauguse. Seepärast nimetatakse elektromagnetvälja mõnikord kaugväljaks, samas kui lähiväli tähistab neid otseselt laengute ja vooluga juhi lähedal asuvaid välju, Lisaks energiale omab elektromagnetlaine ka impulssi ja impulsimomenti, mis võivad vastastikmõjus ainega viimasele üle kanduda. Elektromagnetkiirgust liigitatakse elektromagnetlaine sageduse, lainepikkuse või energia järgi. Elektromagnetlainete spektri skaala alates väikseimast sagedusest (ehk suurimast lainepikkusest) on järgmine: raadiolained, mikrolained, infrapunakiirgus, nähtav valgus, ultraviolettkiirgus, röntgenikiirgus ja gammakiirgus. FüüsikaElektromagnetkiirguse omadusedElektromagnetlaine on elektri- ja magnetväljade häirituse levik ruumis, mistõttu see ei vaja levimiseks keskkonda. Erinevalt elektromagnetlainest on osadel lainetel, nagu helilained õhus või vees, laine veepinnal, aineline keskkond vajalik, kuna nende lainete korral ongi tegu keskkonna häirituse levimisega. Elektri- ja magnetväljad alluvad superpositsiooniprintsiibile, mis tähendab, et kui kaks sama lainepikkusega elektromagnetlainet kohtuvad, siis summaarsesse lainesse annavad mõlemad oma panuse. Tekib elektromagnetlainete interferents. (Kui footonite lainepikkused on erinevad, siis summaarset lainet ei teki. Elektromagnetlainet võib vaadelda kui ühte osakestefüüsika standardmudeli osakest, vastastikmõju vahendavat energiat kandvat bosonit ja bosoneid võib samas aegruumi punktis olla kuitahes palju. Keegi ei sega teist, riku teise bosoni saadetavat, edasikanduvat energiasõnumit). Kuna elektromagnetväli on vektorväli, siis täpsemalt öeldes kumbagi lainet iseloomustavad vektoriaalsed suurused (näiteks E) liituvad nagu vektorid. Elektromagnetlaine on ristlaine, järelikult saab seda iseloomustada polarisatsiooniga, mille suund on defineeritud elektrivälja vektori suunaga. Elektromagnetkiirgus allub dualismiprintsiibile ehk sellel on nii laineline kui ka korpuskulaarne ehk osakeseline olemus. Tüüpiliselt on lainelised omadused hästi vaadeldavad madalate võnkesageduste korral, kõrgema võnkesagedusega lainepikkustel aga ilmnevad korpuskulaarsed nähtused. LainemudelLainemudeli järgi levib elektromagnetkiirgus lainena, kus elektrivälja muutus on tekitatud magnetvälja muutusest ja vastupidi. E-vektor on alati B-vektoriga risti ja samas faasis ehk kui üks neist on mingis punktis saavutanud maksimumi, siis on ka teisel seal maksimaalne väärtus, kusjuures elektri- ja magnetvälja tugevuste suhe püsib konstantne. Elektromagnetlaine sagedus ja lainepikkus on omavahel seotud järgneva valemi järgi:
kus on laine levimise kiirus (vaakumis on selleks konstant , aines on väiksem), on sagedus ja lainepikkus. Kuna kõik elektromagnetlained levivad vaakumis samasuguse kiirusega, siis lainete puhul, mille lainepikkus on suurem, peab sagedus olema sama võrra väiksem. Samuti kui lainepikkus on väiksem, peab sagedus olema sama võrra suurem. Lainena on elektromagnetkiirgusele omased nähtused, nagu murdumine, dispersioon, interferents ja difraktsioon (mis on interferentsi erijuht). Osakese mudel ja kvantteooriaOsakese mudeli kohaselt toimub elektromagnetiline kiirgamine ja neeldumine portsjonite ehk footonite kaupa. Footoni energia E ja sellele vastava elektromagnetlaine sagedus f on seotud Plancki-Einsteini valemiga: kus on Plancki konstant, on lainepikkus ja on valguse kiirus. Kvantteooria lisab korpuskulaarsele mudelile tingimuse, et aatomites on energiatasemed diskreetsete väärtustega ehk seega saab aatom elektronide üleminekul ühelt tasemelt teisele neelata ja kiirata ainult kindla sagedusega footoneid. Osakese mudel koos kvantteooriaga seletab ära näiteks fotoefekti, musta keha kiirguse ja Comptoni efekti, mida lainemudel teha ei suuda. Lainelisi ja korpuskulaarseid omadusi saab ka korraga vaadelda. Kui lasta topeltpilule langeda väga nõrk valgus ja teisele poole pilu paigutada ekraanina fotoelektronkordisti, saab jälgida üksikute footonite langemist ekraanile. Väikse arvu footonite korral langevad nad sinna pealtnäha juhusliku jaotuse järgi, aga kui neid on palju, siis on näha, et suurema tõenäosusega langevad nad piirkonda, kus laineteooria kohaselt peaks olema interferentsi maksimum. 1961. aastal teostas Claus Jönsson topeltpilu katse elektronidega, mis kinnitas, et ka aineosakestel on olemas lainelised omadused.[1] ElektromagnetspekterElektromagnetkiirgust saab jaotada sageduse järgi spektriks. Väiksematele sagedustele vastavad suuremad lainepikkused ja väiksemad kvandi energiad. Raadiolained on madalaima sagedusega elektromagnetlained, nende ülemiseks piiriks on ligikaudu 300 GHz. Inimkond rakendab neid infoedastusvahendina, looduslikud raadiolainete allikad on mõned kosmilised objektid, näiteks pulsarid. Mikrolained kuuluvad kõrgema sagedusega raadiolainete piirkonda (umbes 0,3–300 GHz). Lisaks infoedastusvahenditele (mobiiltelefoniside) kasutatakse mikrolaineid radarites, raadioteleskoopides, navigatsioonis (GPS) ja mikrolaineahjudes. Kosmiline taustkiirgus jääb mikrolainete piirkonda. Infrapunakiirgus on elektromagnetkiirgus, mis langeb vahemikku 1–400 THz, piirnedes ühelt poolt punase valgusega (sellest ka nimi). Infrapunast kiirgust nimetatakse sageli soojuskiirguseks, kuna inimesele tuttavad "soojad" (ehk ligikaudu samas suurusjärgus temperatuuril kui inimese keha) objektid kiirgavad elektromagnetkiirgust, mille maksimum jääb inimsilmale nähtamatu infrapunase kiirguse vahemikku. Tehislikult rakendatakse seda kiirgust näiteks soojusandurites (-sensorites), infoedastuses (optiliste kiudude kaudu) ja öönägemisseadmetes. Nähtavaks valguseks või lihtsalt valguseks nimetatakse elektromagnetkiirgust, mis on inimsilmale nähtav. Selleks loetakse kiirgust vahemikus 400–790 THz, sagedamini aga väljendatakse valguse spektrit lainepikkuste skaalas, milleks on vastavalt 390–750 nm. Inimene saab suure osa informatsioonist nägemismeele kaudu ehk nähtava valguse abil. Looduslikeks allikateks on näiteks tähed (sh. Päike), leek ja bioluminestsents. Tehislikult on nähtav valgus kasutuses igal pool, kus on vaja midagi inimsilmale nähtavaks teha. Ultraviolettkiirgus on elektromagnetkiirgus vahemikus 10–400 nm. Looduslikult pärineb inimese jaoks suur osa UV-kiirgusest Päikeselt, ehkki Maa atmosfäär laseb sellest läbi ainult väikse osa: UV-kiirgus lammutab hapniku ja osooni molekule ning neeldub selles protsessis. Kasutatakse luminofoorlampides, kus UV-kiirgus muudetakse nähtavaks valguseks, ja fluorestseerivate värvidega tehtud kujutiste kuvamiseks (näiteks turvaelementides). UV-kiirgust blokeeriva filtrina kasutatakse päikesekreemi; ka tavaline klaas on UV-kiirgusele suures osas läbipaistmatu.[2] Röntgenikiirgus (0,01–10 nm) jõuab Maani kosmilistest allikatest, sealhulgas ka Päikesest, aga Maa atmosfääris see neeldub. Kasutatakse näiteks meditsiinis ning lennujaamade ja riigipiiride turvakontrollis. Gammakiirgus on kõige lühema lainepikkusega elektromagnetkiirgus (vähem kui 0,01 nm). Atmosfäär on selles lainepikkuste piirkonnas läbipaistmatu, aga looduses esinevatest ja tehislikest radioaktiivsetest isotoopidest eralduvale gammakiirgusele jääb inimene avatuks. Rakendust leiab näiteks meditsiiniliste vahendite desinfektsioonis ja vähiravis. Raadioteleskoopidega kosmoses on võimalik kosmilist gammakiirgust vaadelda, kuna erinevalt maapealsetest teleskoopidest ei sega neid atmosfäär. Bioloogilised efektidInimese silm on vastuvõtlik nähtavale valgusele, lisaks võib ta tunda ka silmale nähtamatut kiirgust (näiteks infrapunast), kui see on piisavalt intensiivne, et põhjustada nahas neeldumisel soojusaistingu. Spektraalne vastuvõtlikkus erineb liigiti: näiteks mesilased on võimelised nägema UV-kiirgust.[3] Fotosüntees toimub nähtava (mõnel liigil ka infrapunase[4]) valguse vahendusel, mis ergastab klorofülli molekule. Elusorganismidele on kahjulik elektromagnetkiirgus ükskõik millises spektripiirkonnas, kui see on piisavalt intensiivne, et tekitada kuumakahjustust, aga suurema osa elektromagnetkiirguse energiast saadakse nähtava valguse ja infrapunakiirguse näol, kuna Wieni nihkeseadusest lähtuvalt asub Päikese kiirguse spektraalne maksimum just selles vahemikus. Peale selle lühemad lainepikkused neelduvad Maa atmosfääris. Kõrgsageduslik Elektromagnetkiirgus, mis ei pruugi olla eriti intensiivne, osutub organismidele kahjulikuks, kui footoni energia on piisav, et tekitada DNA-d kahjustavaid keemiliselt aktiivseid osakesi (pikalainelise UV-kiirguse korral), kahjustada DNA sidemeid otseselt (keskmine UV-kiirgus) või ioniseerida aatomeid (lühilaineline UV kuni gammakiirgus). UV-kiirgus võib põhjustada näiteks päikesepõletust ja nahavähki.[5] Lisaks eelpool mainitule saavad inimesele kaudsel moel kahju tekitada ka päikesetormidest pärit suure intensiivsusega raadiolained, mis võivad tekitada rikkeid elektrivõrgus ja elektroonikaseadmetes. Elektromagnetkiirgus ja lennundusLennundus on valdkond, kus elektromagnetkiirguse mõju on eriti oluline, kuna see võib mõjutada lennukite elektroonikaseadmeid ja sidevahendeid ning seega ka lennuohutust.[6] OhudElektromagnetkiirgus võib lennukite elektroonikale ohtlik olla mitmel erineval viisil:[6]
Turvalisuses tagamineLennundusettevõtted ja reguleerivad asutused on kehtestanud mitmeid elektromagnetkiirguse piiranguid, et tagada lennuki elektroonikaseadmete turvalisus. Näiteks on kehtestatud piirangud raadiolainete võimsusele, mis võivad lennukite elektroonikat mõjutada, ning võetud kasutusele nõuded elektromagnetilise ühilduvuse tagamiseks, et mitte segada lennukite elektroonikaseadmete tööd.[7] Lisaks on lennundussektor võtnud kasutusele ka spetsiaalsed elektromagnetkiirgust mõõtvad seadmed, mis võimaldavad lennuki meeskonnal ja tehnilisel personalil jälgida elektromagnetkiirgust lennuki erinevates osades ning tuvastada ja lahendada võimalikud elektromagnetkiirgusest tekkivad probleemid.[8] KasutusvõimalusedSiiski ei ole elektromagnetkiirgus lennunduse jaoks alati ohtlik Paljud lennukid kasutavad navigeerimiseks elektroonilisi süsteeme ning elektromagnetilisi kiirgusallikaid, nagu radar ja lennujuhtimissüsteem, mis on lennunduse jaoks hädavajalikud. [9] Vaata kaViited
|