Suorakulmainen kolmio on geometriassakolmio, jonka yksi kulma on suora eli 90 astetta.[1] Suoran kulman viereisiä sivuja kutsutaan kateeteiksi ja suoran kulman vastaista sivua hypotenuusaksi.
Pythagoraan lauseen mukaan suorakulmaisessa kolmiossa hypotenuusan (suoran kulman vastaisen sivun) neliö on yhtä suuri kuin muiden sivujen eli kateettien neliöiden summa. Jos hypotenuusan pituus on c ja kateettien a ja b, tämä voidaan ilmaista yhtälöllä
Tämä pätee myös kääntäen: jos kolmion sivut toteuttavat tämän yhtälön, sivujen a ja b välinen kulma on suora. Yhtälö osoittaa myös, että hypotenuusa on suorakulmaisen kolmion pisin sivu.
Laskukaavoja
Kulmat
Suorakulmaisen kolmion terävät kulmat ovat toistensa komplementtikulmia, koska
Janat
Geometrisen keskiarvon lauseen mukaan hypotenuusaa vastaan oleva korkeus on kateettien a ja b projektioiden n ja m keskiverto eli
Suorakulmaisessa kolmiossa kummatkin kateetit a ja b kohtaavat toisensa kohtisuorasti ja toimivat korkeusjanana, jolloin pinta-alan suuruus voidaan ilmoittaa sivujen avulla
Thaleen lause sanoo, että puoliympyrän sisältämä kehäkulma on suora kulma. Sen seurauksena kolmio, jonka yksi sivu on ympyrän halkaisijalla ja sen vastainen kärki ympyrän kehällä, on suorakulmainen kolmio. Tämän ympyrän säde on
Tietynkokoiselle neliöruudutetulle paperille voidaan yleensä piirtää useitakin sellaisia suorakulmaisia kolmioita, joiden kärkipisteet osuvat viivojen risteyskohtiin. Kuten yllä on todettu, suorakulmaisen kolmion hypotenuusan pituutta c vastaava korkeus h saadaan kateettien pituuksien a ja b avulla:
Kun tässä esim. a = 3, b = 4 ja c = 5, saadaan h = 2,4. Piirtämisen helpottamiseksi tämä voidaan kertoa viidellä, jolloin korkeudeksi saadaan 12. Suurennetun kolmion kärkipisteet voidaan nyt asettaa esim. koordinaattipisteisiin (0, 0), (9, 12) ja (25, 0).