En physique, la densité massique d'énergie désigne le quotient d'une énergieE par la massem de matière dans laquelle cette énergie est déposée ou stockée :
Pour le stockage d'énergie, quand il s'agit d'une propriété intrinsèque du matériau (ou du dispositif) considéré, on l'appelle énergie spécifique.
Plus la densité d'énergie est élevée, plus il y a d'énergie pouvant être stockée ou transportée pour un volume ou une masse donné. Ceci est particulièrement important dans le domaine des transports (automobile, avion, fusée…). On notera que le choix d'un carburant pour un moyen de transport, outre les aspects économiques, tient compte du rendement du groupe motopropulseur.
Les sources d'énergie de plus forte densité sont issues des réactions de fusion et de fission. En raison des contraintes générées par la fission, elle reste cantonnée à des applications bien précises. La fusion en continu, elle, n'est pas encore maîtrisée à ce jour. Le charbon, le gaz et le pétrole sont les sources d'énergie les plus utilisées au niveau mondial, même s'ils ont une densité d'énergie beaucoup plus faible, le reste étant fourni par la combustion de la biomasse qui a une densité d'énergie encore plus faible.
Densités d'énergie typiques
La liste suivante fournit la densité d'énergie de matières potentiellement utilisables pour le stockage ou la production d'énergie. La liste ne prend pas en compte la masse des réactifs nécessaires, comme l'oxygène pour la combustion ou la matière pour l'annihilation avec l'antimatière. La conversion d'unités suivante peut être utile pour la lecture du tableau : 1 MJ ≈ 0,28 kWh. Pour les combustibles, sauf mention contraire, le pouvoir calorifique supérieur est indiqué (en pratique une partie de cette énergie est perdue sous forme l'énergie absorbée par la vaporisation de la vapeur d'eau produite lors de la réaction chimique) ; pour les systèmes électrochimiques, les pertes internes sont écartées. Dans les deux cas, la valeur de la densité d'énergie pratique peut se réduire de 5 à 10 %. Le poids et le volume des équipements annexes indispensables (contenants et réservoirs, pompes et tuyaux, protections des opérateurs, etc.) ne sont pas pris en compte.
↑E=mc2 ; (en) Gerald A. Smith, « High density storage of antimatter for space propulsion applications », AIP Conference Proceedings, AIP, vol. 552, , p. 939–943 (DOI10.1063/1.1358031, lire en ligne, consulté le ).