Share to:

 

מספר סטירלינג

מספרי סטירלינג (על שם המתמטיקאי הסקוטי ג'יימס סטירלינג) הם מספרים דמויי המקדמים הבינומיים, המופיעים במגוון בעיות קומבינטוריות..

ישנן שתי משפחות של מספרי סטירלינג:

  • מספרי סטירלינג מהסוג הראשון הם המספרים המתקבלים מן הזהות .
  • מספרי סטירלינג מהסוג השני הם המספרים המתקבלים מן הזהות .
בניגוד לקודמיהם, אלה ניתנים לחישוב באמצעות הסכום

מהשוואת המונום העליון נובע כי .

למספרים אלה יש משמעות קומבינטורית.
הוא מספר התמורות על איברים שיש להן מחזורים. למשל, כי יש 8 תמורות שמבנה המחזורים שלהן הוא 3+1, ועוד 3 שהמבנה שלהן הוא 2+2.
הוא מספר הדרכים לפרק קבוצה בת עצמים ל- תת-קבוצות לא-ריקות. למשל, משום שיש שבע דרכים לפרק קבוצה בת 4 איברים לשני חלקים: ארבע שבהן יש בקבוצה אחת איבר יחיד ובשנייה שלושה, ועוד שלוש שבהן יש בכל חלק שני איברים. מספרי סטירלינג מהסוג השני מקיימים את נוסחת הרקורסיה .

סדרת המונומים מהווה בסיס סטנדרטי לחוג הפולינומים במשתנה אחד. גם הסדרה מהווים בסיס למרחב הזה, והמטריצות הן מטריצות מעבר מהבסיס הראשון לשני ובחזרה, בהתאמה. לכן הן הפוכות זו לזו: , ומכאן הזהויות

לכל .

לקריאה נוספת

  • Ronald Graham, Donald Knuth, Oren Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, 1994, pp. 257-267
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya