Per la geometria euclidea, un parallelogramma (o parallelogrammo) è un quadrilatero con i lati opposti paralleli. I lati e gli angoli opposti di un parallelogramma sono congruenti.
La congruenza dei lati e degli angoli opposti è una diretta conseguenza del V postulato di Euclide, relativo agli angoli interni determinati da una retta che ne taglia due, e nessuna delle caratteristiche del quadrilatero può essere dimostrata senza ricorrere al postulato di Euclide o a una delle sue formulazioni equivalenti.
L'etimologia, dal greco παραλληλ-όγραμμον, una forma "di linee parallele", riflette la definizione.
Il parallelogramma è un caso particolare di trapezio. Il parallelogramma ha due possibili altezze, secondo quale lato viene considerato come base.
Tipologie
Quadrato - parallelogramma equilatero ed equi-angolo.
La figura solida corrispondente tridimensionale del parallelogramma è il parallelepipedo.
Formula per l'area
Un parallelogramma con base e altezza può essere diviso in un trapezoide e un triangolo retto, per essere ricombinato in un rettangolo, come mostrato nella figura a destra. Questo significa che l'area di un parallelogramma è la stessa di quella di un rettangolo con identica base e altezza: