モルワイデ図法モルワイデ図法(モルワイデずほう、Mollweide projection)は、1805年にドイツの天文学者・数学者カール・モルワイデが考案した[1]地図投影法の一種である。 特徴擬円筒図法の一種で、地図上の任意の場所で実際の面積との比が等しくなる正積図法である[2]。地球全体を1枚の平面に表現でき、地図の外周は楕円形になる。楕円の長径(横)と短径(縦)の比は2:1となり、縮尺1分の1の地図を作成したとすれば、横36040km、縦18020kmの楕円となる。 緯線はどれも水平な直線になる。経線は中央経線が垂直な直線となるが、それ以外の経線は弧を描く。等積になるように緯線の間隔を調整するため、距離の比は一定になっていない。赤道上では正角でなく、南北方向が東西方向に比べ1.234倍伸びている。中央経線上で正角になるのは緯度40度44分である[3]。地図の周辺部の歪みが大きくなるが、サンソン図法ほど大きくはない。 中・高緯度の地形の歪みは小さい。 主に分布図に利用される。 表式地球を半径1の球とし、赤道上を縮尺1でモルワイデ図法に投影する場合、経度 λ、緯度 φ に対応する点は ただし θ はラジアン単位で次の式を満たす数である: 赤道縮尺1のモルワイデ図法の面積は地球表面積の π2/8≒1.234倍であり、正積図法ゆえどの点でもこの面積倍率である[4]。中央経線上での縦横の歪みは (π2/8)(cosφ/cosθ)2 になる。
脚注
関連項目外部リンク |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve