リーマン面 とは、局所的には複素数の集合 C の開部分集合と同相である位相空間を言う;加えて、これらの開集合の間に正則な変換写像があることが要請される。正則性条件により C 上の正則関数や有理型関数を扱う複素解析学の考え方や方法を曲面へ移すことが可能となる。コンパクトなリーマン面を閉リーマン面という。
閉リーマン面の種数 とは、くだけた言い方をするとハンドル(把手)の数のことである。例えば右の図に示した閉リーマン面の種数は 3 である。より正確には、種数は1次ベッチ数の半分として、つまり、複素係数1次特異ホモロジー群 H1(X, C) の C-次元の半分として定義される。種数は閉リーマン面を同相の違いを除いて分類(英語版)する。すなわち、閉リーマン面が同相であること(ただし微分同相である必要はない)と、種数が等しいこととは同値である。したがって、種数は閉リーマン面の基本的な位相不変量である。他方、ホッジ理論は、 の種数と 上の正則1形式がなす空間の(C-)次元とが一致することを示しているので、種数はリーマン面の複素解析的な情報を持っているともいえる[1]。
で与えられる。
この台 R(f) は有限集合であることが知られている;これは X がコンパクトであることと、(ゼロでない)正則関数の零点集合は集積点を持たないという事実(一致の定理)の結果である。したがって (f) はwell-definedである。この形の因子を主因子と呼ぶ。また差が主因子である2つの因子は線型同値であるという。
また、因子 D のすべての係数の和を deg(D) で表して、D の次数という。主因子の次数は 0 であることが示せるので[2]、因子の次数は線型同値類にのみ依存している。
有理型1形式 ω = f dz ≠ 0 の因子 (ω) も同様に、つまり (ω) = (f) で定義される。大域的な有理型1形式の因子を標準因子と呼び、通常は記号 K で表す。任意の2つの有理型1形式は線型同値になるので、標準因子は線型同値の違いを除いて一意に定まる(そのことから、標準因子と呼ばれる)。
次で定義される C 上のベクトル空間 L(D) の次元 がもっとも興味のある量である:
ここで M(X) は閉リーマン面 X 上の有理型関数のなす体である。つまり、もし点 z で因子 D の係数 sz が負ならば関数 0 ≠ f ∈ L(D) は点 z で位数が −sz 以上の零点を持ち、正ならば点 z で位数が sz 以下の極を持つ。
線型同値な2つの因子に付随するベクトル空間は、因子の差から決まる大域的な有理関数 h を関数に乗じる操作により(定数倍の不定性を除いて)自然に同型となる。
すなわち、この値は、点 P を除く各点で正則であり、点 P で位数が n 以下の極を持つ関数のなす空間の次元である。したがって n = 0 の場合、関数は曲面 X 全体で正則な関数、つまり整関数であることが要求される。リウヴィルの定理から、そのような関数は定数関数に限るので、 となる。一般に、数列 は増加列である。
より無限遠点に位数2の極を持っている。したがって、その因子は K = (ω) = −2P (ここに P は無限遠点)である。
したがって、定理より、数列は
1, 2, 3, ...
である。この列は部分分数分解から導出することも可能である。逆に、この列がこのように始まると種数 g はゼロとなる。
種数が 1 の場合
次はトーラスC/Λ のような閉リーマン面の種数が g = 1 の場合である。ここで、Λ は2-次元の格子(群としては、 Z2 に同型)である。その種数は1であり、1次特異ホモロジー群は、右の図に示した2つのループにより自由に生成された群である。C 上の標準的な座標 z は、いたるところ正則(つまり、極を持たない)な X 上の1-形式 ω = dz を与える。したがって、標準因子 K は (ω) であり、ゼロである。
曲面上で、数列 (nP) は、
1, 1, 2, 3, 4, 5 ...
であり、これは種数 g = 1 を特徴付ける。実際、因子 D = 0 に対し、上で述べたように、(K − D) = (0) = 1 となる。n > 0 である D = nP に対して、K − D の次数は、負の値であるので、補正項は 0 である。次元の列は、楕円関数論から導くこともできる。
種数が 2 以上の場合
種数 g = 2 の場合は数列 (nP) は、
1, 1, ?, 2, 3, ...
である。このことから、次数 2 の ? のついた項が、点 P に依って 1 または 2 になることを示そう。種数 2 の場合には、その数列が 1, 1, 2, 2, ... となるような点 P がちょうど 6つ存在し、他の点では一般の列 1, 1, 1, 2, ... となる。特に、種数 2 の曲線のことを超楕円曲線という。g > 2 に対しては、ほとんどの点 P では数列は g + 1 個の1から始まり、そうならない点 P は有限個しか存在しない(ヴァイエルシュトラスの点(英語版)(Weierstrass point)を参照)。
直線束のリーマン・ロッホの定理
リーマン面上の因子と正則直線束の間の密接な対応関係を使い、異なってはいるが同値な方法で述べることもできる。L を X 上の正則直線束とする。 で L の正則切断の空間を表すとする。この空間は有限次元となるので、この空間の次元を で表すとする。K で X 上の標準束を表す。すると、リーマン・ロッホの定理は、次のように記述できる。
前の節の定理は、L がポイントバンドル(英語版)(すなわち という形の直線束)のときの特別な場合である。定理は個の線型独立な K の正則切断(つまり X 上の1-形式)が存在していること示すことにも適用できる。L を自明束とすると、X 上の唯一の正則関数は定数関数であるので、 である。L の次数はゼロで、 は自明束である。このようにして次が得られる。
したがって、 であり、 個の線型独立な正則 1-形式が存在することを証明したこととなる。
代数曲線のリーマン・ロッホの定理
上記のリーマン面上の因子のリーマン・ロッホ定理の定式化の対象はすべて、代数幾何学に類似するものがある。リーマン面の類似物は、体 k 上の非特異な代数曲線 C である。用語の差異(曲線 vs. 曲面)は、実多様体としてはリーマン面は2次元であるが、複素多様体としては1次元であることによる。リーマン面がコンパクトであることは、代数曲線が完備(英語版)であるという条件(この場合射影的であることにも同値)と並行して議論することができる。一般的な体 k 上には、特異(コ)ホモロジーの考え方はないので、いわゆる、幾何種数が次のように定義される。
つまり、この式の値は、大域的に定義された(代数的)1-形式の空間の次元である(ケーラー微分を参照)。最後に、リーマン面上の有理型関数は局所的には正則関数の分数として表現される。したがって、それらは(代数多様体における)正則関数の分数として局所的に表された有理関数に置き換えることができる。上と同じように、曲線上の有理関数 f で となるもの全体のなすベクトル空間の次元を とかくと、
上とまったく同じ公式が成り立つ。
deg D ≥ 2g -1 のときに
が成り立つことも上と同様である。
ここに C は代数的閉体 k 上の射影的な非特異代数曲線である。事実、同じ公式が任意の体の上の射影曲線に対して成立する。ただし、因子の次数を、基礎体の可能な拡張と因子をサポートする点の剰余体からくる重複度を考えに入れる[5]。 結局、アルティン環の上の固有曲線に対して、因子に付随する直線束のオイラー標数は、(近似的に定義された)因子の次数と構造層 のオイラー標数により与えられる[6]。
定理の中の滑らかさの前提は次のように緩めることができる。代数的閉体上の(射影的な)曲線で、すべての局所環がゴレンシュタイン環であるようなものについて、上と同じステートメントが成立する。ただし上記で定義した幾何種数は以下で定義される算術種数 ga で置き換えるものとする。
^Altman, Allen; Kleiman, Steven (1970), Introduction to Grothendieck duality theory, Lecture Notes in Mathematics, Vol. 146, Berlin, New York: Springer-Verlag, Theorem VIII.1.4., p. 164
Mukai, Shigeru; William Oxbury (translator) (2003). An Introduction to Invariants and Moduli. Cambridge studies in advanced mathematics. 81. New York: Cambridge University Press. ISBN0-521-80906-1. MR2004218. Zbl1033.14008
Vector bundles on Compact Riemann Surfaces, M.S. Narasimhan, p. 5-6.