Rump, S. M., Ogita, T., & Oishi, S. (2008). Accurate floating-point summation part I: Faithful rounding. en:SIAM Journal on Scientific Computing, 31(1), 189-224.
Rump, S. M., Ogita, T., & Oishi, S. (2008). Accurate floating-point summation part II: Sign, K-fold faithful and rounding to nearest. en:SIAM Journal on Scientific Computing, 31(2), 1269-1302.
数値線形代数
Oishi, S., & Rump, S. M. (2002). Fast verification of solutions of matrix equations. en:Numerische Mathematik, 90(4), 755-773.
Oishi, S., & Tanabe, K. (2009). Numerical Inclusion of Optimum Point for Linear Programming. 日本応用数理学会 Letters, 1, 5-8.
数値積分
Yamanaka, N., Okayama, T., Oishi, S., & Ogita, T. (2010). A fast verified automatic integration algorithm using double exponential formula. Nonlinear Theory and Its Applications, IEICE, 1(1), 119-132.
Yamanaka N., Okayama T., Oishi S. (2016) Verified Error Bounds for the Real Gamma Function Using Double Exponential Formula over Semi-infinite Interval. In: Kotsireas I., Rump S., Yap C. (eds) Mathematical Aspects of Computer and Information Sciences. MACIS 2015. Lecture Notes in Computer Science, vol 9582. Springer, Cham.
高性能計算
Morikura, Y., Ozaki, K., & Oishi, S. (2013). Verification methods for linear systems using ufp estimation with rounding-to-nearest. Nonlinear Theory and Its Applications, IEICE, 4(1), 12-22.
Ozaki, K., Ogita, T., Oishi, S., & Rump, S. M. (2012). Error-free transformations of matrix multiplication by using fast routines of matrix multiplication and its applications. Numerical Algorithms, 59(1), 95-118.
ODE/PDEの解に対する精度保証付き数値計算
Liu, X., & Oishi, S. (2013). Verified eigenvalue evaluation for the Laplacian over polygonal domains of arbitrary shape. en:SIAM Journal on Numerical Analysis, 51(3), 1634-1654.
Liu, X., & Oishi, S. (2013). Guaranteed high-precision estimation for interpolation constants on triangular finite elements. Japan Journal of Industrial and Applied Mathematics, 30(3), 635-652.
Oishi, S. (1994). Two topics in nonlinear system analysis through fixed point theorems. IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences, 77(7), 1144-1153.
Y. Kanazawa and S. Oishi (2002), "A numerical method of proving the existence of solutions for nonlinear ODEs using affine arithmetic". Proc. SCAN'02 - 10th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic, and Validated Numerics.