巡回畳み込み巡回畳み込み(じゅんかいたたみこみ、英語: circular convolution)あるいは循環畳み込み(じゅんかんたたみこみ、英語: cyclic convolution)とは、二つの非周期関数に対し、一方の周期和を用いて、もう一方を通常の方法で畳み込むことを意味する。このような状況は巡回畳み込み定理の文脈において現れる。もし無限の積分区間が、ちょうど一周期分へと減らされた場合には、両方の関数の周期和として、同様の畳み込み作用を表現することが出来る。このような状況は離散時間フーリエ変換の文脈において現れ、周期畳み込みとも呼ばれる。特に、二つの離散シーケンスの積に対する離散時間フーリエ変換は、各シーケンスに対するその変換の周期畳み込みである[1]。 周期 T の周期関数 xT と、他の関数 h との畳み込みはふたたび周期関数となり、次のような形で、有限区間の積分として表現される: ここで to は任意のパラメータであり、hT は h の周期和で、それは次のように定義される: この演算は関数 xT と hT の周期畳み込みである。もし xT が他の関数 x の周期和であるなら、同様の演算は関数 x と h の巡回畳み込みと呼ばれる。 離散シーケンス同様に、周期 N の離散シーケンスに対して、関数 h と x の巡回畳み込みを次のように書くことが出来る: これは行列の乗法に対応し、その積分変換の核は巡回行列である。 関連項目注釈
参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve