法線ベクトル法線ベクトル(ほうせんベクトル、英: normal vector)とは、2次元平面においては、曲線上の点における接線に垂直な平面ベクトル、3次元空間においては、曲面上の点における接平面に垂直な空間ベクトルのことである。法線(ほうせん、英: normal)とは、接線や接平面に垂直な直線のことである。 曲線(曲面)上の点に対して法線ベクトルは1つに決まらないことに注意する必要がある。そこで中でも単位ベクトル(ノルムが 1)であるものを単位法(線)ベクトル(英: normal unit vector)というが、それでも2つあることに注意する必要がある。 3次元での例曲面の法線ベクトルは、2つの線形独立な接ベクトルの外積として求めることができる。 右図で示した右手系の正規直交座標系において、直方体の一つの面の頂点を A, B, C, D とすると、面 ABCD の法線ベクトル N は、 となる。ここで ×はベクトルの外積を表す。ノルムは線分 AD と線分 BC の長さの積となっている。 線分 AB と線分 DC が x軸に平行で、線分 AD と線分 BC が z軸に平行な場合、 となる。ここで j は y軸方向の単位ベクトルである。 導出平面において、
接空間の法線ベクトルによる表示接点と法線ベクトルから、元の接空間を表すことができる。
関連項目外部リンクInformation related to 法線ベクトル |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve