複素解析空間複素解析空間(ふくそかいせきくうかん、英: complex analytic space)とは、同型を除いて一意的な"解析空間の構造"と呼ばれる構造が定義されたハウスドルフ空間を言う。曖昧さがあったそれまでのリーマン面の概念を整理するためにアンリ・カルタンによって導入された[1]。 定義X をハウスドルフ空間とし、X の開被覆を (Ui)i ∈ I とする。さらに、各 Ui 上の点に対し、複素平面 C の開集合 Ai (⊂ C) 上の点を対応させる位相同型な複素数値関数 zi : Ui → Ai が与えられているとする。次の連接条件を満たすとき、X に解析空間の構造が定義されると言う[2]。 (連接条件)
ここで、ハウスドルフ空間 X とその上で定義された同型な解析空間の構造の類との組を解析空間(analytic space)と呼ぶ[4]。 層を用いた定義に値を持つ位相空間上の定数層を で表す。-空間は、構造層が の上の代数 (algebra) である局所環付き空間である。 複素アフィン空間 の開集合 を選び、 上の有限個の正則函数 を固定し、 をこれらの正則函数の共通の零点集合とする、つまり、 とする。 上の環の層を を の への制限とする、ただし は 上の正則函数の層である。すると局所環付き -空間 は局所モデル空間となる。 複素解析空間 (complex analytic space) は、有限個の正則函数の零点集合の開部分集合である局所モデル空間に局所同相な局所環付き -空間 である。 複素解析空間の射は、局所環付き空間の射として定義される。射は正則函数とも呼ばれる。 脚注
参考文献
関連項目 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve