計量テンソルリーマン幾何学において計量テンソル(けいりょうテンソル、英: metric tensor)とは、空間の局所ごとの構造を表す階数(rank)2のテンソルである。距離と角度の定義を与える。多様体が与えられたとき、多様体の接空間で、滑らかに変化する非負の計量テンソルが得られるときにその多様体をリーマン多様体と呼ぶ。そのため、計量テンソルは、リーマン計量(Riemannian metric)とも呼ばれる。 ひとたびある座標系 xi が選ばれると、計量テンソルは行列で表される。通常、文字 G があてがわれ、各成分は gij とされる。Gは、ユークリッド空間のように平らな領域では単位行列となる。 以下では、添え字の和に関してアインシュタインの縮約記法に従う。 時刻t1 から t2 までの曲線の長さは、t をパラメータとして、 と定義される。 この定義からわかる通り、 gij は、2点間の距離に対する各軸成分の寄与を表す係数である。 このとき2つの接ベクトル(tangent vector) と のなす角度 θ は、 で与えられる。 例ユークリッド空間2次元のユークリッド計量(平らな空間、直交直線座標系)では、その全域において、計量テンソルがクロネッカーデルタまたは単位行列となる。すなわち で与えられ、曲線の長さは良く知られた で与えられる。逆に計量テンソルが単位行列になるのは直交直線座標系のときに限る[1]。 座標系を替えたユークリッド計量の例をいくつか示す。
[要説明] 時空・ローレンツ多様体
非ユークリッド空間
脚注
参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve