Share to:

 

連続線型拡張

数学 > 関数解析学 > 連続線型拡張

数学関数解析学の分野における連続線型拡張(れんぞくせんけいかくちょう、: continuous linear extension)とは、次に述べる手順のことを指す:

完備ノルム線型空間 上にある線型変換を定義する時、初めに 内の稠密部分集合上に線型変換 を定義し、その後、後述の定理によって、 を全空間へと拡張することが便利となることが、しばしばある。この結果として得られる拡張は線型かつ有界(したがって、連続)である。

定理

以下のBLT定理が知られている。なお「BLT定理」という名称は有界線型変換(Bounded Linear Transformation)による。

定理 (BLT定理) ―  をノルム空間から完備なノルム線型空間 への任意の有界線型作用素とする。このとき完備化 から へのある有界線型変換

を満たすものが一意に存在する。また の作用素ノルムは作用素ノルムに等しい。

定理の後半のノルムに関する部分は前半から明らかに従う。

応用

一例として、リーマン積分の定義について考える。ある区間 上の階段関数は、次の形式で記述される:

ここで は実数であり、 とし、 は集合 指示関数を表す。 上のすべての階段関数からなる空間に ノルム(Lp空間を参照)を備えたものはノルム線型空間であり、ここではそれを と表す。階段関数の積分を、次のように定義する:

このとき、関数としての は、 から への有界線型変換である[注釈 1]

ノルムについて右側連続であるような、 上の区分的連続かつ有界関数からなる空間を、 で表す。上述の空間 は、 において稠密であるため、BLT定理を応用することが出来る。結果として線型変換 は、 から への有界線型変換 へと拡張される。これにより、 内のすべての関数についてリーマン積分を定義することが出来る。すなわち、すべての に対して、そのリーマン積分は

で定義される。

ハーン=バナッハの定理

上述の定理によって、有界線型変換 を、「 において稠密であるなら」、 から へのある有界線型変換へと拡張することが出来た。 において稠密でない場合、ハーン=バナッハの定理を使うことで、ある拡張が存在することを示すことが出来る場合もある。しかし、そのような拡張は必ずしも一意ではない。

脚注

  1. ^ ここで、 もノルム線型空間であることに注意されたい。実際、線型空間の公理を満たすことから線型空間であり、そのノルムは絶対値によって定めることが出来る。

参考文献

  • Reed, Michael; Barry Simon (1980). Methods of Modern Mathematical Physics, Vol. 1: Functional Analysis. San Diego: Academic Press. ISBN 0-12-585050-6 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya