零因子抽象代数学において、環の零因子(れいいんし、英: zero divisor)とは、環の乗法において、 ような元のことである。 これは環の乗法における因子の特別な場合である。 定義環 の元 は、 となる が存在するとき、すなわち を満たすときに左零因子(ひだりれいいんし、ひだりぜろいんし、英: left zero divisor)と呼ばれる。この定義では非零元の存在を要求するから、自明な環における0は零因子ではないが、自明な環以外では、0は必ず零因子となる。 また、この定義は、x を ax に送る R から R への写像が単射でないことと同値である[1]。同様に、環の元 a が右零因子とは、ある y ≠ 0 が存在して ya = 0 となることである。 左または右零因子である元は単に零因子と呼ばれる[2]。左かつ右零因子である元 a は両側零因子(two-sided zero divisor)と呼ばれる(ax = 0 となる零でない x は ya = 0 となる零でない y とは異なるかもしれない)。環が可換であれば左零因子と右零因子は同じである。 環の零因子でない元は正則である(regular)または非零因子(non-zero-divisor)と呼ばれる。0でない零因子は0でない零因子(nonzero zero divisor)または非自明な零因子(nontrivial zero divisor)と呼ばれる。 脚注
参考文献
関連項目 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve