대수군대수기하학에서 대수군(代數群, 영어: algebraic group)은 대수다양체를 이루는 군이다. 정의대수적으로 닫힌 체 에 대한 대수군 는 군 연산 이 갖추어져 있고, 이들이 정규함수(regular function)인 대수다양체이다. 즉, 대수다양체의 범주에서의 군 대상이다. 대수군의 대수부분군(영어: algebraic subgroup)은 자리스키 위상에 따라 닫혀 있고, 부분군을 이루며, 대수다양체를 이루는 부분집합이다. 분류선형대수군(영어: linear algebraic group)은 아핀 대수다양체를 이루는 대수군이며, 아벨 다양체는 아벨 군을 이루는 대수군이다. 슈발레 구조 정리(영어: Chevalley’s structure theorem)[1][2]에 따라서, 모든 연결 대수군 은 아벨 다양체 의 선형대수군 으로의 군 확대로 간주할 수 있다. 즉, 모든 대수군 에 대하여, 다음 조건을 만족시키는 유일한 짧은 완전열이 존재한다. 여기서 예
반면, 예를 들어 유니터리 군 은 복소 대수군이 아니다. 같이 보기각주
외부 링크
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve