윅 정리
양자장론에서 윅 정리(Wick定理, 영어: Wick’s theorem)는 그린함수의 섭동전개에 대한 정리이다. 이탈리아의 이론물리학자 잔카를로 비크(이탈리아어: Gian-Carlo Wick)의 이름을 따서 명명되었다. 이것은 영의 온도에서의 그린함수와 장의 연산자가 상호작용 묘사로 주어지면 항상 성립한다. 이때 상호작용하지 않는 해밀토니언 에 상호작용하는 해밀토니언 이 섭동으로 주어져서 시간 변화에 따른 계의 변화에 개입한다. 이 조건이 모두 성립하면, 윅의 정리는 연산자들의 기댓값의 곱이 모든 가능한 연산자들의 쌍으로 나타낼 수 있다는 것을 의미한다. 설명윅 정리는 다음과 같이 기술된다. 일련의 장 , , ...의 모음에 대하여 다음의 관계가 성립한다. 여기서 는 시간 순서이며 :...:는 장들의 표준 순서 배열을 의미한다. 또한 우변 두 번째 항의 합은 장 연산자의 모든 가능한 축약 쌍을 나타낸다. 같이 보기각주
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve