Натриум азид — неорганско соединение со формулата NaN3. Оваа безбојна сол е компонента за формирање на гас во старите системи на воздушни перничиња за автомобилски. Се користи за подготовка на други азидни соединенија. Тоа е јонска супстанција, многу е растворлива во вода и е многу акутно отровна.[5]
Стуктура
Натриум азид е јонска цврста материја. Познати се две кристални форми, ромбоедарски и шестаголни.[1][6] И двете прифаќаат слоевити структури. Азидниот анјон е многу сличен во секоја форма, центросиметричен со N-N растојанија од 1.18 Å. Na+ јонот има октаедрална геометрија. Секој азид е поврзан со шест Na+ центри, со три Na-N врски до секој терминален центар на азот.[7]
Подготовка
Вообичаениот метод на синтеза е „процесот Wislicenus“, кој се одвива во два чекори во течен амонијак. Во првиот чекор, амонијакот се претвора во натриум амид со метален натриум:
2 Na + 2 NH 3 → 2 NaNH 2 + H 2
Тоа е редокс реакција во која металниот натриум дава електрон на протон од амонијак кој се редуцира во водороден гас. Натриумот лесно се раствора во течен амонијак за да произведе хидрирани електрони одговорни за сината боја на добиената течност. Na+ и NH− 2 јони се создаваат во оваа реакција.
Натриум амид последователно се комбинира со азотен оксид:
2 NaNH 2 + N 2O → NaN 3 + NaOH + NH 3
Овие реакции се основата на индустриската рута, која произведуваше околу 250 тони годишно во 2004 година, со зголемување на производството поради зголемената употреба на воздушни перничиња.[5]
Лабораториски метод
Куртиус и Тиле развија уште еден производствен процес, каде нитрит естер се претвора во натриум азид користејќи хидразин. Овој метод е погоден за лабораториска подготовка на натриум азид:
2 NaNO 2 + 2 C 2H 5OH + H 2SO 4 → 2 C 2H 5ONO + Na 2SO 4 + 2 H 2O
C 2H 5ONO + N 2H 4· H2O + NaOH → NaN 3 + C 2H 5OH + 3 H 2O
Третманот на натриум азид со силни киселини дава хидразоева киселина, која е исто така исклучително токсична:
H+ + N− 3 → HN 3
Водните раствори содржат мали количини на водород азид, чиешто формирање е опишано со следната рамнотежа:
N− 3 + H 2O ⇌ HN 3 + OH− , K = 10−4.6
Натриум азид може да се уништи со третман со раствор на азотна киселина:[9]
2 NaN 3 + 2 HNO 2 → 3 N 2 + 2 NO + 2 NaOH
Употреба
Автомобилски воздушни перничиња и слајдови за евакуација на авиони
Постарите формулации на воздушни перничиња содржеле мешавини од оксиданти и натриум азид и други агенси, вклучително и запалувачи и забрзувачи. Електронски контролер ја активира оваа мешавина за време на сообраќајна несреќа:
2 NaN 3 → 2 Na + 3 N 2
Истата реакција се јавува при загревање на солта на приближно 300 °C. Натриумот што се формира е само потенцијална опасност и, во воздушните перничиња на автомобилот, се претвора во реакција со други состојки, како што се калиум нитрат и силициум диоксид. Во вториот случај, се создаваат безопасни натриум силикати.[10] Додека натриум азидот сè уште се користи во тобоганите за евакуација на модерните авиони, воздушните перничиња за автомобили од поновата генерација содржат помалку чувствителни експлозиви како што се нитрогванидин или гванидин нитрат.
Органска и неорганска синтеза
Поради опасноста од експлозија, натриум азидот има само ограничена вредност во органската хемија во индустриски размери. Во лабораторија, се користи во органска синтеза за воведување на азидната функционална група со супституција на халиди. Азидната функционална група потоа може да се претвори во амин со редукција со било кој SnCl2 во етанол или литиум алуминиум хидрид или терцијарен фосфин, како што е трифенилфосфин во реакцијата на Стаудингер, со Рани никел или со водород сулфид во пиридин.
Натриум азидот е разновиден прекурсор на други неоргански азидни соединенија, на пример, оловниот азид и сребрен азид, кои се користат во детонаторите како примарни експлозиви. Овие азиди се значително почувствителни на предвремена детонација од натриум азидот и затоа имаат ограничена примена. Оловото и сребрениот азид може да се направат преку реакција на двојно поместување со натриум азид и нивните соодветни нитратни (најчесто) или ацетатни соли. Натриум азид, исто така, може да реагира со хлоридните соли на одредени земноалкални метали во воден раствор, како што се бариум хлорид или стронциум хлорид за соодветно да произведе бариум азид и стронциум азид, кои се исто така релативно чувствителни првенствено експлозивни материјали. Овие азиди може да се извлечат од растворот преку внимателно сушење.
Биохемија и биомедицински употреби
Натриум азид е корисен реагенс за сонда и конзерванс.
Се користи во земјоделството за контрола на штетници на патогени кои се пренесуваат преку почвата како што се Meloidogyne incognita или Helicotylenchus dihystera.[12]
Се користи и како мутаген за селекција на култури на растенија како што е ориз,[13]јачмен[14] или овес.[15]
Безбедносни размислувања
Натриум азид може да биде фатално токсичен,[16] па дури и мали количини може да предизвикаат симптоми. Токсичноста на ова соединение е споредлива со онаа на растворливите алкални цијаниди,[17] иако не е пријавена токсичност од искористените воздушни перничиња.[18]
Произведува екстрапирамидални симптоми со некроза на церебралниот кортекс, малиот мозок и базалните ганглии. Токсичноста може да вклучува и хипотензија,[19] слепило и хепатална некроза. Натриум азид ги зголемува нивоата на цикличниот GMP во мозокот и црниот дроб со активирање на гванилат циклаза.[20]
Растворите на натриум азид реагираат со метални јони за да таложат метални азиди, кои можат да бидат чувствителни на шок и експлозивни. Ова треба да се земе предвид при изборот на неметален транспортен контејнер за раствори на натриум азид во лабораторија. Ова исто така може да создаде потенцијално опасни ситуации доколку азидните раствори треба директно да се фрлат низ одводот во санитарен канализациски систем. Металот во водоводниот систем може да реагира, формирајќи високо чувствителни метални азидни кристали кои би можеле да се акумулираат со години. Потребни се соодветни мерки на претпазливост за безбедно и еколошки одговорно отстранување на остатоците од растворот на азид.[21]
Наводи
↑ 1,01,11,2Stevens E. D.; Hope H. (1977). „A Study of the Electron-Density Distribution in Sodium Azide, NaN3“. Acta Crystallographica A. 33 (5): 723–729. doi:10.1107/S0567739477001855.
↑Pringle, G. E.; Noakes, D. E. (1968-02-15). „The crystal structures of lithium, sodium and strontium azides“. Acta Crystallographica Section B. 24 (2): 262–269. doi:10.1107/s0567740868002062.
↑Holleman, Arnold Frederik; Wiberg, Egon (2001), Wiberg, Nils (уред.), Inorganic Chemistry, Преведено од Eagleson, Mary; Brewer, William, San Diego/Berlin: Academic Press/De Gruyter, ISBN0-12-352651-5.
↑Committee on Prudent Practices for Handling, Storage, and Disposal of Chemicals in Laboratories, Board on Chemical Sciences and Technology, Commission on Physical Sciences, Mathematics, and Applications, National Research Council (1995). „Disposal of Waste“. Prudent Practices in the Laboratory: Handling and Disposal of Chemicals. Washington, DC: National Academy Press. стр. 165. ISBN978-0-309-05229-0.CS1-одржување: повеќе имиња: список на автори (link)
↑Betterton, E. A. (2003). „Environmental Fate of Sodium Azide Derived from Automobile Airbags“. Critical Reviews in Environmental Science and Technology. 33 (4): 423–458. doi:10.1080/10643380390245002. S2CID96404307.
↑Applications of sodium azide for control of soilborne pathogens in potatoes. Rodriguez-Kabana, R., Backman, P. A. and King, P.S., Plant Disease Reporter, 1975, Vol. 59, No. 6, pp. 528-532 (link)
↑Awan, M. Afsar; Konzak, C. F.; Rutger, J. N.; Nilan, R. A. (2000-01-01). „Mutagenic Effects of Sodium Azide in Rice1“. Crop Science. 20 (5): 663–668. doi:10.2135/cropsci1980.0011183x002000050030x.