Share to:

 

A posteriori

A-posteriorikennis is kennis afgeleid uit de ervaring. Het tegengestelde is a-priorikennis, die voorafgaat aan de ervaring of er niet afhankelijk van is.

Het is een vorm van kennis die gebruikmaakt van een inductieve redenering: de reden bepalen uit het resultaat.

De Van Dale van 2005 geeft bij a posteriori de volgende toelichting:

  • achteraf gedacht, en ook:
  • vaststelling of oordeel achteraf

Datgene dus wat uit onderzoek van de feiten blijkt.

A-posteriorikans

Het begrip a posteriori wordt ook gebruikt in de kansrekening en statistiek, in het bijzonder in de bayesiaanse statistiek. Men spreekt dan van "a-posteriorikans" in tegenstelling tot "a-priorikans".

Voorbeelden

Een munt lijkt op het oog zuiver, daarom neemt men vooraf, a priori, aan dat de kans op kop 1/2 is. Bij 100 worpen met de munt blijkt 80 keer kop gegooid te zijn. Achteraf, a posteriori, stelt men zijn aanname bij, en neem aan dat de a-posteriorikans op kop 0,8 is.

Via een test bepaalt een arts of een patiënt mogelijk een bepaalde ziekte Z heeft. Van de bevolking heeft een fractie P(Z)=1% de ziekte. Vooraf, a priori, is de kans dat de patiënt de ziekte heeft, de a priori-kans, dus 1%. Van de test zijn de volgende gegevens bekend: de kans P(–|Z)=2% dat de test niet ontdekt dat iemand de ziekte heeft, en de kans P(+|niet Z)=5% dat de test ten onrechte positief is, dat wil zeggen aangeeft dat een gezond persoon de ziekte zou hebben. Als de test bij de patiënt een positieve uitslag heeft, wat is dan a posteriori, dus achteraf nu de testuitslag vastligt, de kans op de ziekte? Daartoe berekent men met de regel van Bayes deze a posteriori-kans:

Van a priori een kans van 1% is bij positieve testuitslag a posteriori een kans van 17% op de ziekte.

Voorbeelden van drogredenen

Twee andere voorbeelden zijn klassieke voorbeelden van drogredenen uit de kansrekening:

  • "Ik dacht net aan jou toen de telefoon ging. Dat kan geen toeval zijn!". Ook hier vind je een opvallende onwaarschijnlijkheid omdat je pas achteraf op het resultaat gaat letten. Als je een experiment zou opzetten waarbij je iedere keer als de telefoon gaat onmiddellijk opschrijft waar je op dat moment aan dacht, vind je wellicht een uitslag die overeenkomt met een normale kansverdeling. De reden is hier het selectief geheugen, alle keren dat de telefoon ging en je aan iets anders dacht vallen niet zo op. Deze drogreden heet cum hoc ergo propter hoc of post hoc ergo propter hoc, afhankelijk van je interpretatie.
  • "De bliksem is hier al eens ingeslagen, en de kans dat de bliksem twee keer op dezelfde plaats inslaat is erg klein". De kans dat de bliksem twee keer op dezelfde plaats inslaat is inderdaad klein, maar omdat hij al eens ingeslagen is, is een deel van de waarschijnlijkheid al een zekerheid geworden.

Zie ook

Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9 
Kembali kehalaman sebelumnya