Genetisch algoritmeEen genetisch algoritme (GA) is een algoritme ontstaan in de kunstmatige intelligentie, dat gebruikt wordt om oplossingen te vinden voor optimalisatie- en zoekproblemen. Genetische algoritmen zijn een klasse binnen de evolutionaire algoritmen. GeschiedenisJohn Holland was de grondlegger van veel van het hedendaags werk in GA's. In het begin was het een puur theoretisch onderwerp (gebaseerd op computer modelling). Tegenwoordig richt het onderzoek zich op het ontwikkelen van methodes die gebruikt kunnen worden voor het oplossen van problemen. TerminologieDe invloeden van de evolutietheorie zijn terug te vinden in de gebruikte terminologie. Zo wordt een parameter die geoptimaliseerd moet worden een gen genoemd en de waarde van een gen een allel. Alle genen samen zijn een chromosoom, de abstracte representatie van een oplossing. De oplossing zelf wordt een individu genoemd. Alle individuen zijn samen een populatie. De populatie wordt bij iedere iteratie van het algoritme vernieuwd. De populatie van een bepaalde iteratie wordt een generatie genoemd. (Belangrijk: het genoom zijn alle chromosomen van een organisme, op een chromosoom liggen de allelen.) WerkingEen genetisch algoritme doorloopt de volgende stappen om tot een oplossing te komen: InitialisatieInitieel worden verschillende oplossingen gegenereerd. Deze oplossingen zijn, afhankelijk van het probleem, één of meerdere getallen die aanvankelijk meestal willekeurig gekozen zijn. In de loop van het gesimuleerde evolutieproces ontstaan uit deze willekeurige oplossingen betere oplossingen. De programmeur kan ook zelf een aantal redelijke oplossingen toevoegen als beginpopulatie. SelectieVoor elk van de oplossingen in de populatie wordt een bepaalde waarde bepaald, de zogeheten fitness waarde met behulp van een fitnessfunctie. Deze waarde geeft aan hoe goed de oplossing is in vergelijking met de andere en (indien bekend) met een beoogde optimale oplossing. Net zoals in de evolutietheorie is het idee dat de betere oplossingen overleven. Op basis van deze fitnesswaarden wordt de grootte van de populatie verminderd. Dit kan gebeuren door de beste 25 of 50 procent van de oplossingen te nemen om mee door te rekenen en de andere weg te gooien of door onderling telkens twee oplossingen met elkaar te vergelijken en de beste van die twee te nemen. ReproductieOm de populatie te doen groeien, dienen de oplossingen zich te reproduceren. Dit kan met behulp van mutatie en recombinatie. Bij recombinatie worden twee oplossingen gecombineerd om twee nieuwe oplossingen te maken. Dit kan bijvoorbeeld door crossover, waarbij delen van de ene oplossing in de andere oplossing worden ingevuld. Bij mutatie worden bij een aantal willekeurig gekozen oplossingen in de populatie één of meerdere getallen gemuteerd. Hierdoor kunnen oplossingen (lichtelijk) veranderen in vergelijking met de populatie in de vorige generatie. Soms worden de beste oplossingen uitgesloten van crossover en mutatie; zij gaan onveranderd door naar de volgende generatie. Deze strategie heet de elite selectie strategie. Dit proces wordt herhaald tot de populatie even groot is als de vorige generatie. StopconditieHet stoppen van de evolutie kan op verschillende manieren. Enkele veelgebruikte stopcondities zijn:
Samengevat ziet de werking van een genetisch algoritme in pseudocode er als volgt uit:
OpmerkingenVoordelen
Nadelen
Zie ookExterne linkBronnen, noten en/of referenties
|