Nucleaire geneeskundeNucleaire geneeskunde is een medisch specialisme, uitgeoefend door nucleair geneeskundigen, dat gebruikmaakt van het verval van radioactieve isotopen voor de diagnostiek en behandeling van ziekten. Een specialisme dat een sterke relatie heeft met de nucleaire geneeskunde, is de radiotherapie. In tegenstelling tot bij de nucleaire geneeskunde wordt bij de radiotherapie gewerkt met uitwendige bronnen van ioniserende straling, of bronnen die wel inwendig worden toegepast maar die niet vrij in het lichaam kunnen bewegen (brachytherapie). Nucleairgeneeskundige diagnostiekHet voordeel van radioactieve stoffen is dat ze eenvoudig terug te vinden zijn door de straling die ze uitzenden. Een naald is, als zij radioactief is, gemakkelijk te vinden in een hooiberg. In de nucleaire diagnostiek volgt men het spoor van een zogenaamde tracer. Voor dit doel worden radioactieve elementen ingebouwd in geschikte stoffen of bestaande geneesmiddelen. Dit middel bindt zich aan een bepaalde receptor die een relatie heeft met een bepaald ziekteproces. Een dergelijke tracer is met een soort camera gemakkelijk te volgen, waardoor de lokalisatie van de receptoren en de uitgebreidheid van de ziekte te vervolgen is. Bij nucleaire diagnostiek wordt - in tegenstelling tot bij de nucleaire therapie - gewerkt met lage stralingsdosering die zo min mogelijk schade aanricht aan het weefsel. Voorbeelden
Gamma-cameraBij de gewone isotopenscan wordt een radioactieve stof in het lichaam gebracht die gammastraling afgeeft. De stof wordt oraal of intraveneus toegediend of ingeademd. De straling die het lichaam vervolgens verlaat, wordt via een gammacamera tot een beeld verwerkt. Het verschil met röntgenonderzoek is dat daarbij straling van buiten af door het lichaam gaat. Anders dan de meeste andere technieken laten isotopenscans meer zien van de functie dan van de anatomie. PositronemissieBij sommige isotopen komt negatieve bètastraling (elektronen) vrij, bij andere isotopen positieve bètastraling (positronen). Deze positronen worden niet rechtstreeks waargenomen, want annihileren vrijwel onmiddellijk met een elektron. Bij dit proces worden twee gammafotonen geproduceerd die het lichaam in tegenovergestelde richtingen verlaten. Deze fotonen worden gemeten met een PET-scan of een SPECT-scan (Single Photon Emission Computed Tomography).[1] Uit de richting van de beide gammafotonen kan de positie waar het positron ontstond bepaald worden. Hierdoor kan men afbeeldingen van ziekteprocessen maken en bestuderen. De PET-scanner rekent de gegevens door met een computer, zoals bijvoorbeeld ook bij een CT-scan gebeurt.
Nucleairgeneeskundige therapieBehandeling met nucleaire geneeskundige technieken bestaat uit de vernietiging van specifiek weefsel door middelen die hoog radioactief zijn, maar een korte halveringstijd (T1/2)(tussen een paar uur tot een paar dagen) hebben. Bij de behandeling met radioactieve isotopen is het de bedoeling cellen te doden door de bèta- en gammastraling. Door de juiste isotoop deel te laten uitmaken van een slim gekozen radiofarmacon, beperkt men de schade aan gezonde cellen zo veel mogelijk terwijl de zieke cellen worden gedood. De toegepaste dosering is veel hoger dan bij de diagnostiek. De patiënt wordt als radioactief beschouwd en alles wat van hem afkomt eveneens.
Isotopen
Isotopen zijn atomen of ionen met een gelijk atoomnummer en verschillende atoommassa. Veel chemische elementen hebben meerdere isotopen die instabiel zijn, dat wil zeggen radioactief verval kennen. Afhankelijk van het soort verval dat een bepaalde isotoop heeft, wordt bètastraling (elektronen) of gammastraling afgegeven. De eerstgenoemde soort straling heeft vooral een lokaal effect in het weefsel en is buiten het lichaam niet te meten. Isotopen die dit soort straling uitzenden worden gebruikt voor nucleaire therapie, terwijl stoffen die gammastraling uitzenden, (ook) gebruikt worden voor diagnostiek. Er zijn drie kernreactoren in de wereld die zich hebben toegelegd op de productie van isotopen voor medisch gebruik; één ervan is de kernreactor van Petten (Noord-Holland). Een andere methode om isotopen te produceren maakt gebruik van deeltjesversnellers. Sommige isotopen kunnen met reactoren vervaardigd worden, andere met deeltjesversnellers, nog andere met beide. Een deeltjesversneller laat atomen met grote snelheid op elkaar botsen waardoor er een stukje van de kern afgaat en een instabiele isotoop ontstaat. De 'technetium-koe'Technetium is een element dat veel gebruikt wordt in de nucleaire geneeskunde, vanwege de geschikte chemische eigenschappen en de halveringstijd die lang genoeg is voor diagnostiek en kort genoeg om onwerkzaam te worden voordat te veel schade aan het lichaam is toegebracht. Door de korte halveringstijd van 6 uur ontstaat echter een praktisch probleem bij het transport naar ziekenhuizen. Dit probleem wordt omzeild door de zogenaamde 'technetium-koe': Een staaf die molybdeen-99 bevat, dat een T1/2 van bijna 3 dagen heeft en daardoor over grote afstanden vervoerd en ongeveer een week gebruikt kan worden. Dit molybdeen vervalt geleidelijk in technetium-99m, dat vervolgens in het ziekenhuis eenvoudig 'gemolken' kan worden. Dit technetium-99m is een relatief langlevend metastabiel nucleair isomeer van technetium-99. Molybdeen-99 wordt in kernreactoren gemaakt uit verrijkt uranium, hetgeen vaak problemen geeft met de verkrijgbaarheid. In 2008 is daarom een patent aangevraagd voor de productie van technetium-99m op basis van het stabiele en eenvoudig verkrijgbare molybdeen-98, door het te beschieten met neutronen.[5] VeiligheidRadioactiviteit kun je niet zien en kan wel schade aanrichten. Dit laatste is afhankelijk van de dosering. De toegediende isotopen leven maar kort: technetium-99m, dat veel wordt gebruikt, heeft bijvoorbeeld een halveringstijd van 6 uur. Dat wil zeggen dat na een etmaal nog maar (1/2)4 of 1/16e van de oorspronkelijke hoeveelheid over blijft. Bij het onderzoek is de hoeveelheid straling waaraan de patiënt wordt blootgesteld niet groter dan bij een gewoon röntgenonderzoek of een skivakantie. Toch wordt erg voorzichtig met de tracer omgegaan; tijdens zwangerschap wordt van nucleair onderzoek afgezien, als de moeder borstvoeding geeft zijn er aparte richtlijnen. Het personeel dat elke dag met radioactiviteit in aanraking komt, moet beschermd worden, opdat ze niet een te hoge dosis krijgen. Middelen die gebruikt worden voor nucleaire therapie geven uiteraard veel meer straling dan middelen die als tracer gebruikt worden voor diagnostiek. De eerstgenoemde middelen moeten daarom ook met veel meer voorzichtigheid worden gehanteerd. Zie ookExterne linksBronnen, noten en/of referenties
|