Share to:

 

Funkcja pary

Funkcja pary – przyporządkowanie służące do jednoznacznego zakodowania pary liczb naturalnych za pomocą pojedynczej liczby naturalnej.

Każda funkcja pary może zostać użyta w teorii mnogości do dowodu, że zbiory liczb całkowitych oraz wymiernych maję tę samą moc co zbiór liczb naturalnych. W teorii rekursji służą one do kodowania funkcji więcej niż jednego argumentu naturalnego za pomocą funkcji jednej zmiennej

Definicja formalna

Funkcją pary jest pierwotnie rekurencyjna bijekcja

(Uwaga: tutaj )

Funkcja pary Cantora

Funkcja pary Cantora przyporządkowuje liczbę naturalną dowolnej parze liczb naturalnych

Funkcja pary Cantora jest funkcją

daną wzorem

Wartość otrzymaną przez zastosowanie tej funkcji do liczb i często oznacza się jako

Definicja ta może być indukcyjnie rozszerzana do funkcji krotkowej Cantora

następująco

Odwracanie funkcji pary Cantora

Niech dane będzie jako

i powiedzmy, że chcemy znaleźć i

Zdefiniujmy pomocniczo:

gdzie jest -tą liczbą trójkątną.

Rozwiązując równanie:

z jako funkcją parametru dostaniemy:

co jest ściśle rosnące i ciągłe dla nieujemnego rzeczywistego

Skoro

dostajemy

skąd

Tak więc, aby wyznaczyć i z postępujemy następująco:

Skoro funkcja Cantora jest odwracalna, musi być różnowartościowa i na.

Bibliografia

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya