Share to:

 

Symbol Legendre’a

Symbol Legendre’afunkcja ściśle multiplikatywna stosowana w teorii liczb, oznaczana lub [1][2][3].

Wprowadzony w 1798 przez Legendre’a[4]. Jego uogólnieniem jest symbol Jacobiego.

Definicja

Niech będzie liczbą pierwszą. Liczbę niebędącą wielokrotnością nazwiemy resztą kwadratową modulo jeśli istnieje liczba całkowita taka, że Fakt ten oznaczymy Jeśli taka liczba nie istnieje, liczbę nazywamy nieresztą kwadratową modulo [1], w artykule oznaczamy to jako Wielokrotności liczby nie zaliczamy ani do reszt ani do niereszt[2].

Czasami za dziedzinę funkcji nie przyjmuje się wielokrotności [1][2][3].

Własności

  • Jeśli to [2].
  • Kryterium Eulera jest użyteczne do obliczania wartości symbolu oraz jest używane do dowodzenia innych własności:
    [1][2][3].
  • Symbol Legendre’a jest funkcją ściśle multiplikatywną licznika: Ta własność jest wnioskiem z kryterium Eulera[1][2][3].
  • Najważniejszą własnością jest prawo wzajemności reszt kwadratowych, zwane czasami theorema fundamentale (twierdzenie podstawowe) lub theorema aurerum (twierdzenie złote)[1][2][5]:
  • Tę własność, będącą wnioskiem z kryterium Eulera, nazywa się I uzupełnieniem prawa wzajemności[1][2]:
  • Istnieje również II uzupełnienie prawa wzajemności[1]:

Tabela wartości

Tabela przedstawia wartości funkcji dla i [6].

a
p
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
3 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0
5 1 −1 −1 1 0 1 −1 −1 1 0 1 −1 −1 1 0 1 −1 −1 1 0 1 −1 −1 1 0 1 −1 −1 1 0
7 1 1 −1 1 −1 −1 0 1 1 −1 1 −1 −1 0 1 1 −1 1 −1 −1 0 1 1 −1 1 −1 −1 0 1 1
11 1 −1 1 1 1 −1 −1 −1 1 −1 0 1 −1 1 1 1 −1 −1 −1 1 −1 0 1 −1 1 1 1 −1 −1 −1
13 1 −1 1 1 −1 −1 −1 −1 1 1 −1 1 0 1 −1 1 1 −1 −1 −1 −1 1 1 −1 1 0 1 −1 1 1
17 1 1 −1 1 −1 −1 −1 1 1 −1 −1 −1 1 −1 1 1 0 1 1 −1 1 −1 −1 −1 1 1 −1 −1 −1 1
19 1 −1 −1 1 1 1 1 −1 1 −1 1 −1 −1 −1 −1 1 1 −1 0 1 −1 −1 1 1 1 1 −1 1 −1 1
23 1 1 1 1 −1 1 −1 1 1 −1 −1 1 1 −1 −1 1 −1 1 −1 −1 −1 −1 0 1 1 1 1 −1 1 −1
29 1 −1 −1 1 1 1 1 −1 1 −1 −1 −1 1 −1 −1 1 −1 −1 −1 1 −1 1 1 1 1 −1 −1 1 0 1
31 1 1 −1 1 1 −1 1 1 1 1 −1 −1 −1 1 −1 1 −1 1 1 1 −1 −1 −1 −1 1 −1 −1 1 −1 −1
37 1 −1 1 1 −1 −1 1 −1 1 1 1 1 −1 −1 −1 1 −1 −1 −1 −1 1 −1 −1 −1 1 1 1 1 −1 1
41 1 1 −1 1 1 −1 −1 1 1 1 −1 −1 −1 −1 −1 1 −1 1 −1 1 1 −1 1 −1 1 −1 −1 −1 −1 −1
43 1 −1 −1 1 −1 1 −1 −1 1 1 1 −1 1 1 1 1 1 −1 −1 −1 1 −1 1 1 1 −1 −1 −1 −1 −1
47 1 1 1 1 −1 1 1 1 1 −1 −1 1 −1 1 −1 1 1 1 −1 −1 1 −1 −1 1 1 −1 1 1 −1 −1
53 1 −1 −1 1 −1 1 1 −1 1 1 1 −1 1 −1 1 1 1 −1 −1 −1 −1 −1 −1 1 1 −1 −1 1 1 −1
59 1 −1 1 1 1 −1 1 −1 1 −1 −1 1 −1 −1 1 1 1 −1 1 1 1 1 −1 −1 1 1 1 1 1 −1
61 1 −1 1 1 1 −1 −1 −1 1 −1 −1 1 1 1 1 1 −1 −1 1 1 −1 1 −1 −1 1 −1 1 −1 −1 −1
67 1 −1 −1 1 −1 1 −1 −1 1 1 −1 −1 −1 1 1 1 1 −1 1 −1 1 1 1 1 1 1 −1 −1 1 −1
71 1 1 1 1 1 1 −1 1 1 1 −1 1 −1 −1 1 1 −1 1 1 1 −1 −1 −1 1 1 −1 1 −1 1 1
73 1 1 1 1 −1 1 −1 1 1 −1 −1 1 −1 −1 −1 1 −1 1 1 −1 −1 −1 1 1 1 −1 1 −1 −1 −1
79 1 1 −1 1 1 −1 −1 1 1 1 1 −1 1 −1 −1 1 −1 1 1 1 1 1 1 −1 1 1 −1 −1 −1 −1
83 1 −1 1 1 −1 −1 1 −1 1 1 1 1 −1 −1 −1 1 1 −1 −1 −1 1 −1 1 −1 1 1 1 1 1 1
89 1 1 −1 1 1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1 1 −1 1 1 1 −1 −1 1 −1 −1 −1 −1 −1
97 1 1 1 1 −1 1 −1 1 1 −1 1 1 −1 −1 −1 1 −1 1 −1 −1 −1 1 −1 1 1 −1 1 −1 −1 −1
101 1 −1 −1 1 1 1 −1 −1 1 −1 −1 −1 1 1 −1 1 1 −1 1 1 1 1 1 1 1 −1 −1 −1 −1 1
103 1 1 −1 1 −1 −1 1 1 1 −1 −1 −1 1 1 1 1 1 1 1 −1 −1 −1 1 −1 1 1 −1 1 1 1
107 1 −1 1 1 −1 −1 −1 −1 1 1 1 1 1 1 −1 1 −1 −1 1 −1 −1 −1 1 −1 1 −1 1 −1 1 1
109 1 −1 1 1 1 −1 1 −1 1 −1 −1 1 −1 −1 1 1 −1 −1 −1 1 1 1 −1 −1 1 1 1 1 1 −1
113 1 1 −1 1 −1 −1 1 1 1 −1 1 −1 1 1 1 1 −1 1 −1 −1 −1 1 −1 −1 1 1 −1 1 −1 1
127 1 1 −1 1 −1 −1 −1 1 1 −1 1 −1 1 −1 1 1 1 1 1 −1 1 1 −1 −1 1 1 −1 −1 −1 1

Przypisy

  1. a b c d e f g h Adam Neugebauer, Matematyka olimpijska. 1, Algebra i teoria liczb, wyd. 2, Kraków: Wydawnictwo Szkolne OMEGA, 2018, s. 204–211, ISBN 978-83-7267-710-5, OCLC 1055646686 [dostęp 2022-08-14].
  2. a b c d e f g h Władysław Narkiewicz, Teoria liczb, wyd. 3, Warszawa: Wydawnictwo Naukowe PWN, 2003, s. 61, 63–65, 139, 169, ISBN 83-01-14015-1, OCLC 749285993 [dostęp 2022-08-14].
  3. a b c d Eric W. Weisstein, Legendre Symbol [online], mathworld.wolfram.com [dostęp 2022-08-14] (ang.).
  4. A.M. (Adrien Marie) Legendre, Essai sur la théorie des nombres, Paris, Duprat, 1798 [dostęp 2022-08-14].
  5. Eric W. Weisstein, Quadratic Reciprocity Theorem [online], mathworld.wolfram.com [dostęp 2022-08-14] (ang.).
  6. Legendre Symbol(LS) Calculator [online], www.mymathtables.com [dostęp 2022-08-14].

Linki zewnętrzne

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya