Zasada ekwipartycji energii – zasada termodynamiczna mówiąca (w oparciu o mechanikę statystyczną i mechanikę Newtona), że dostępna energia, jaką dysponuje cząsteczka (np. gazu), rozkłada się „po równo” na wszelkie możliwe sposoby (tzw. stopnie swobody) jej wykorzystania[1] – niezależnie od tego, czy jest to stopień swobody związany z energią obrotu, ruchu postępowego, czy związany z drganiami cząstek. Zgodnie z tym prawem średnia energia cząstki (energia o charakterze wewnętrznym, niezwiązana z ruchem całego układu) wynosi:
W przypadkach ruchu w trzech wymiarach liczba stopni swobody związana z ruchem postępowym jest zawsze równa 3. Ruch opisujemy w trzech prostopadłych kierunkach; pojedynczy atom ma tylko takie stopnie swobody.
Z klasycznego punktu widzenia dla cząsteczek liniowych nie uwzględniamy obrotu wokół osi symetrii, ponieważ moment bezwładności wokół takiej osi jest znikomo mały (traktując atomy jako punkty materialne nawet wprost równy zeru). Z punktu widzenia mechaniki kwantowej taki obrót nie zmienia nic w układzie (nie można rozpoznać, czy cząstka się obróciła).
Liczba stopni swobody związana z drganiami jest mnożona razy dwa, ponieważ uwzględnia się tu energię kinetyczną takich drgań, jak i ich energię potencjalną (wartości średnie tych energii są sobie równe).
Dla ciał stałych nie zachodzi ruch postępowy, ani obroty, a tylko drgania w trzech osiach (sieć krystaliczna), zatem tutaj
Historia
Zasada ekwipartycji energii została zaproponowana w 1867 r. przez Maxwella, który zauważył, że energia gazu jest równo dzielona między ruch postępowy i obrotowy. Ludwig Boltzmann w 1868 r. i 1872 r. ostatecznie udowodnił, że energia jest w taki sposób dzielona między wszystkie stopnie swobody ruchu cząsteczki.
Nazwa oznaczająca ‘zasada równego udziału’ wywodzi się z łaciny: przedrostek ekwi- pochodzi od łac. aequus ‘równy, gładki’, zaś rdzeń partycja od łac. particeps ‘uczestnik’ (z członem parti- od rzeczownika parsdop.partis ‘część’).
Z zasady wynika, że znając tylko geometrię cząsteczki, można obliczyć energię wewnętrzną gazu doskonałego takich cząstek. Znając ją, można obliczyć różne wielkości termodynamiczne, między innymi ciepło molowe.
Doświadczenie
Okazuje się, że tak otrzymane wartości ciepła molowego przemiany izochorycznej osiągane są dopiero w wysokich temperaturach (rzędu tysięcy kelwinów). Np. dla wodoru w niskich temperaturach doświadczalne ciepło molowe wynosi w temperaturze pokojowej osiąga i dopiero dla bardzo wysokich temperatur dąży do teoretycznych (odpowiednio wysokie temperatury nie zostały osiągnięte). Można to wytłumaczyć na gruncie mechaniki kwantowej. Energia może osiągać tylko określone, skwantowane wartości. Dla niskich temperatur energia jest znacząco mniejsza od pierwszego niezerowego poziomu energii drgań i obrotów, gaz zachowuje się więc jak gaz jednoatomowy, cząsteczki gazu są „sztywne”. Dla temperatury pokojowej wartość jest już porównywalna z najmniejszą energią obrotów, dlatego też zaczynają one podwyższać energię wewnętrzną. Dla bardzo wysokich temperatur „włączają” się także drgania wewnątrz cząsteczek.