Equação de foguete de Tsiolkovski
A equação do foguete de Tsiolkovski, chamada assim por Konstantin Tsiolkovski, que foi o primeiro que a derivou, considera o princípio do foguete: um aparelho que pode aplicar aceleração ao mesmo empuxo, expulsando parte de sua massa a alta velocidade no sentido oposto, devido à conservação da quantidade de movimento. Diz que para qualquer manobra ou viagem que inclua manobras: ou equivalentemente
no qual: é a massa total inicial, a massa total final e a velocidade de ejeção dos gases em respeito ao impulso específico do foguete. é definido como o produto entre o impulso específico( Isp) e a gravidade local(ɡ0),ou seja : = Isp . ɡ0
(delta-v) é o resultado de integrar no tempo a aceleração produzida pelo uso do motor do foguete (não a aceleração devida a outras fontes como atrito ou gravidade). No caso típico de aceleração no sentido da velocidade, é o incremento da velocidade. No caso da aceleração no sentido contrário (desaceleração), é o decréscimo da velocidade. A gravidade e o atrito também mudam a velocidade porém não fazem parte do delta-v. Por isto, delta-v não é simplesmente a mudança da velocidade. Sem dúvida, o empuxo se aplica em menor tempo, e durante esse período, as outras fontes de aceleração podem ser negligenciadas, assim que o delta-v de um momento determinado pode aproximar-se à mudança de velocidade. O delta-v total pode ser simplesmente somado, embora entre momentos de propulsão a magnitude e quantidade de velocidade muda devido à gravidade, como por exemplo em uma órbita elíptica. A equação se obtém integrando a equação de conservação do momento de inércia. para um foguete simples que emite massa a velocidade constante ( é a massa que se emite). Embora seja uma simplificação extrema, a equação do foguete mostra o essencial da física do voo do foguete em uma única e breve equação. A magnitude delta-v é um dos valores mais importantes em mecânica orbital que quantifica a dificuldade de mudar de uma trajetória a outra. Claramente, para conseguir um delta-v elevado, deve ser elevado (cresce exponencialmente com delta-v), ou deve ser menor, ou deve ser elevado, ou uma combinação destes resultados. Na prática, isto se consegue com foguetes muito grandes (aumentando ), com vários estágios (decrementando ), e foguetes com combustíveis com velocidades de ejeção muito elevadas. Os foguetes Saturno V utilizados no Projeto Apollo e os motores iônicos usados em sondas não tripuladas de longa distância são um bom exemplo disto. A equação do foguete mostra um "decaimento exponencial" de massa, porém não como função do tempo, se não conforme enquanto se produz o delta-v. O delta-v que corresponde a "vida média" é Estágios de foguetesNo caso de foguetes de várias fases, a equação se aplica a cada fase, e em cada fase, a massa inicial do foguete é a massa total do foguete depois de deixar a fase anterior e a massa final é a do foguete justamente antes de deixar a fase que se está calculando. O impulso específico para cada fase pode ser diferente. Por exemplo, se 80% da massa é o combustível do primeiro estágio, 10% é a massa vazia do primeiro estágio e os 10% é o restante do foguete, então: Com três estágios similares menores, se tem e a carga útil é 0,1% da massa inicial. Um foguete de uma fase em órbita, também com um 0,1% de carga útil pode ter uma massa de 11% para depósitos e motores e 88,9% de combustível. Isto dá Se o motor de um novo estágio é ligado antes de que o estágio anterior tenha descartado e os motores que trabalham simultaneamente tem um impulso específico diferente (como muitas vezes são o caso de foguetes de combustível sólido e outros estágios líquidos), a situação é mais complicada. EnergiaNo caso ideal é a carga útil e é a massa que reage (que corresponde a depósitos vazios sem massa, etc.). A energia necessária é Esta é a energia cinética da massa de reação e não a energia cinética requerida pela carga, porém, se =10 km/s e a velocidade do foguete é de 3 km/s, então a velocidade da massa de reação só muda de 3 a 7 km/s; A energia "poupada" corresponde a incremento da energia cinética específica (energia cinética por kg) para o foguete. Em geral:
Se tem de onde é a energia específica do foguete e é uma variável separada, não somente a troca em . No caso de usar o foguete e parar de desacelerar, como pode se dizer, expelindo massa de reação na direção da velocidade, é negativo. A fórmula é para o caso ideal sem perdas de energia por calor, etc. Esta última causa uma redução do empuxo, assim que é uma desvantagem ainda quando o objetivo é perder energia (desacelerar). Se a energia é produzida pela massa como em um foguete químico, o valor do combustível tem que ser:, de onde para o valor do combustível tem que tomar também a massa do oxidante. Um valor típico é , correspondente a 10,1 MJ/kg. O valor real é mais alto. porém parte da energia se perde em forma de calor que sai como radiação. A energia necessária é Conclusão:
Esta otimização não tem em conta as massas dos diferentes tipos de foguetes. Todavia, para um objetivo determinado, como por exemplo mudar de uma órbita a outra, a requerida dependa muito da velocidade a que o motor produz e determinadas manobras podem ser impossíveis se esta é muito baixa. Por exemplo, um lançamento a uma órbita baixa terrestre requer normalmente uma de aproximadamente de 9,5 km/s (grande o suficiente para conseguir a velocidade), porém se o motor puder produzir a uma velocidade um pouco mais elevada que g, seria um lançamento lento e iria requerer uma muito mais elevada (custaria uma de 9,81 m/s). Se a aceleração possível é ou menor, não é possível ir a órbita com esse motor. A potência se obtêm de de onde é o empuxo e é a aceleração devida a ela. Por isto, o empuxo teórico possível por unidade de potência é 2 dividido pelo impulso específico em m/s. A eficiência de empuxo é o empuxo real entre o empuxo teórico. Se ele usa energia solar se restringe ; no caso de elevadas, a aceleração possível é inversamente proporcional à velocidade de escape, assim que o tempo necessário para conseguir um delta-v é proporcional a ; com 100% de eficiência:
Exemplos:
Por isto, a não pode ser demasiado alta. ExemplosSe assume um impulso específico de 4,5 km/s e uma de 9,7 km/s (da Terra a órbita baixa terrestre (OBT).
Ver tambémInformation related to Equação de foguete de Tsiolkovski |