O evento de impacto em Júpiter de 2009, ocasionalmente referido como o impacto de Wesley, foi um evento de impacto de julho de 2009 em Júpiter que causou uma mancha negra na atmosfera do planeta. A área de impacto cobriu 190 milhões de km2, área semelhante à Pequena Mancha Vermelha do planeta e aproximadamente do tamanho do Oceano Pacífico.[3] Estima-se que o impactor tenha cerca de 200 a 500 metros de diâmetro.[4] (Para comparação, o evento de Tunguska foi estimado na faixa de 60 a 190 metros).
Quando visto pela primeira (e em condições precárias), era apenas uma mancha vagamente escura, eu [pensei] provavelmente ser apenas uma tempestade polar escura normal. No entanto, à medida que girava mais à vista e as condições melhoraram, de repente percebi que não estava apenas escuro, estava preto em todos os canais, o que significava que era realmente um ponto preto.[6]
Paul Kalas e colaboradores confirmaram o avistamento. Eles tiveram tempo no telescópio Keck II no Havaí e planejavam observar Fomalhaut b, mas passaram algum tempo olhando para o impacto de Júpiter.[8] A observação infravermelha por Keck e o NASA Infrared Telescope Facility (IRTF)[3] em Mauna Kea mostrou um ponto brilhante onde o impacto ocorreu, indicando que o impacto aqueceu uma área de 190 milhões de km2 da baixa atmosfera a 305° oeste, 57° sul perto do polo sul de Júpiter.[3]
O objeto que atingiu Júpiter não foi identificado antes de Anthony Wesley descobrir o impacto. Um artigo de 2003 estimou que cometas com um diâmetro maior que 1.5 km impactam Júpiter a cada 90 a 500 anos,[11] enquanto uma pesquisa de 1997 sugeriu que o astrônomo Giovanni Domenico Cassini pode ter registrado um impacto em 1690.[12]
Dado o tamanho dos impactadores cometa Shoemaker-Levy 9,[13] é provável que este objeto tivesse menos de 1 km de diâmetro.[2][14]
Encontrar água no local indicaria que o impactor era um cometa,[15] em oposição a um asteroide ou uma lua muito pequena e gelada.[16] A princípio, acreditava-se que era mais provável que o objeto fosse um cometa, já que os cometas geralmente têm mais órbitas de cruzamento de planetas.[17] À distância de Júpiter (5.2 UA), a maioria dos pequenos cometas não está perto o suficiente do Sol para ser muito ativo e, portanto, seria difícil de detectar.[17] No entanto, asteróides de tamanho pequeno também seriam difíceis de detectar, e o trabalho recente de Glenn Orton et al. e Hammel et al. sugeriu fortemente que o impactor era um asteroide, pois deixou apenas um local de impacto, não reduziu a emissão de radiação decamétrica joviana ao contribuir com poeira significativa para a magnetosfera de Júpiter e produziu detritos empoeirados de alta altitude cheios de sílica, muito diferente do que foi produzido pelo cometa Shoemaker-Levy 9.
A partir de 2012, acredita-se que o impactor tenha sido um asteroide com um diâmetro de cerca de 200 a 500 metros.[4]
Visibilidade
Supondo que fosse um cometa inativo (ou asteroide) com cerca de 1 km de diâmetro, esse objeto não teria sido mais brilhante do que a magnitude aparente de 25.[17] (Júpiter brilha cerca de 130 bilhões de vezes mais do que um objeto de magnitude 25).[18] A maioria dos levantamentos de asteroides que usam um amplo campo de visão não vê mais fraco do que a magnitude 22 (que é 16x mais brilhante que a magnitude 25).[17] Mesmo detectar satélites naturais com menos de 10 km de diâmetro orbitando Júpiter é difícil e requer alguns dos melhores telescópios do mundo.[19] Foi somente a partir de 1999 com a descoberta de Callirrhoe que os astrônomos conseguiram descobrir muitas das menores luas de Júpiter.[20]
↑Longo, Giuseppe (2007). «18: The Tunguska event»(PDF). In: Bobrowsky, Peter T.; Rickman, Hans. Comet/Asteroid Impacts and Human Society, An Interdisciplinary Approach. Berlin Heidelberg New York: Springer-Verlag. pp. 303–330. ISBN978-3-540-32709-7. Consultado em 26 de julho de 2009. Arquivado do original em 29 de julho de 2009 !CS1 manut: BOT: estado original-url desconhecido (link). Accessed 2009-07-27. 2009-07-29.
↑Tabe, Isshi; Watanabe, Jun-ichi; Jimbo, Michiwo (fevereiro de 1997). «Discovery of a Possible Impact SPOT on Jupiter Recorded in 1690». Publications of the Astronomical Society of Japan. 49: L1–L5. Bibcode:1997PASJ...49L...1T. doi:10.1093/pasj/49.1.l1. Jupiter has been continuously monitored for almost 400 yr
↑«New moon of Jupiter found». SpaceFlight Now (University of Arizona News Release). Consultado em 23 de julho de 2009
Leitura adicional
Hammel, H. B.; Wong, M. H.; Clarke, J. T.; De Pater, I.; Fletcher, L. N.; Hueso, R.; Noll, K.; Orton, G. S.; Pérez-Hoyos, S.; Sánchez-Lavega, A.; Simon-Miller, A. A.; Yanamandra-Fisher, P. A. (2010). «Jupiter After the 2009 Impact:hubble Space Telescopeimaging of the Impact-Generated Debris and Its Temporal Evolution». The Astrophysical Journal. 715 (2): L150. Bibcode:2010ApJ...715L.150H. doi:10.1088/2041-8205/715/2/L150
Sánchez-Lavega, A.; Wesley, A.; Orton, G.; Hueso, R.; Perez-Hoyos, S.; Fletcher, L. N.; Yanamandra-Fisher, P.; Legarreta, J.; De Pater, I.; Hammel, H.; Simon-Miller, A.; Gomez-Forrellad, J. M.; Ortiz, J. L.; García-Melendo, E.; Puetter, R. C.; Chodas, P. (2010). «The Impact of a Large Object on Jupiter in 2009 July». The Astrophysical Journal. 715 (2): L155. Bibcode:2010ApJ...715L.155S. arXiv:1005.2312. doi:10.1088/2041-8205/715/2/L155