Ариабхата
Ариабха́та (или Арьябха́та, санскр. आर्यभट, IAST: Āryabhaṭa, Кусумапури, 476—550) — индийский астроном и математик. Его деятельность открывает «золотой век» индийской математики и астрономии. Долгое время его путали с учёным того же имени, жившим на четыре века позднее; сейчас последнего называют Ариабхата II. Биографические сведенияДостоверных сведений об Ариабхате практически не сохранилось. Надёжно установленным можно считать только год рождения учёного, поскольку на него довольно ясно указал сам Ариабхата в десятой строфе своего трактата «Ариабхатия»[англ.]: «Когда шестьдесят раз по шестьдесят лет текущей юги истекло [499 г. н. э.], минуло двадцать три года с моего рождения»[1]. Наиболее вероятно, Ариабхата происходил из северо-западной Индии, из царства Ашмака, располагавшегося на границе современных индийских штатов Гуджарат и Махараштра. Для продолжения образования он переехал в царство Магадха, в столице которой находился крупнейший «университет» того времени — буддистский монастырь Наланда. Здесь он провёл долгие годы, написал свои основные труды, и не исключено, что некоторое время возглавлял учебную часть монастыря[1]. АриабхатияИз сочинений, написанных Ариабхатой, известны названия двух — «Ариабхатия» (499) и «Ариабхата-сиддханта», но сохранился текст лишь одного — «Ариабхатии». Оно состоит из четырёх частей, изложенных в стихотворной форме в 123 шлоках (стихах): дашагитика (система чисел, астрономические константы и таблица синусов), ганитапада (математика), калакрийа (календарь, расчёты соединений планет и обращений по эпициклам), голапада (основы сферической астрономии и расчёты затмений). Изложение Ариабхаты — краткое до чрезвычайности. По форме это стихотворный текст, содержащий основные правила, к которым дополнительно требуется устный комментарий учителя. Ариабхата написал свой трактат, когда ему было всего 23 года. Крайне маловероятно, что ему принадлежат все те результаты, о которых он пишет. Скорее всего, мы имеем здесь дело с достаточно глубокой традицией, от которой до нас почти ничего не дошло. Впрочем, некоторые результаты, приводимые Ариабхатой, содержатся в несколько более ранних индийских астрономических сочинениях — сиддхантах, восходящих к аналогичным сочинениям древнегреческих астрономов. С другой стороны, несомненно, что именно труд Ариабхаты своевременно разъяснял и устранял противоречия в астрономических вычислениях, проводившихся до него согласно пяти авторитетнейшим сиддхантам: «Сам Бог Солнца явился в образе Ариабхаты, искусного в астрономических стихах»[1]. «Ариабхатия» оказала огромное влияние на всё последующее развитие математики и астрономии в Индии и положило начало новой научной традиции в этой стране[2]. В середине VIII века трактат Ариабхаты перевёл на арабский язык багдадский астроном Абу’л-Хасан Ахвази (Abu’l-Hasan Ahwazi fl. 830), применявший «систему Ариабхаты» в своих расчётах[1][3]; ссылка на этот перевод великого учёного ал-Бируни впоследствии сделала Ариабхату известным и европейским учёным. МатематикаВ первой части трактата воспроизводится таблица разностей синусов через 3°45′ = 225′, приведённая ранее в «Сурье-сиддханте». В математической части трактата Ариабхата:
и
В связи с проблемой повторяемости небесных движений Ариабхата рассматривает неопределённые уравнения первой степени с двумя целочисленными неизвестными и решает их с помощью метода измельчения. АстрономияАстрономия Ариабхаты имеет много общего с более ранней «Сурьей-сиддхантой». Система мира, которой придерживается Ариабхата — это доптолемеева древнегреческая модель с движением планет по эпициклам. Ариабхата принимает следующий порядок планет: Луна, Меркурий, Венера, Солнце, Марс, Юпитер, Сатурн. Он также предложил планетарную модель, предполагающую, что планеты движутся по эллиптическим орбитам, а не круглым. Ариабхата выразил догадку, что вращение небес — только кажущееся, и является следствием вращения Земли вокруг своей оси:
Размеры Земли и ЛуныВ своём сочинении Ариабхата приводит весьма точные данные для размеров Земли и Луны. Для диаметра Земли он указывает величину в 1050 йоджан, и говорит, что одна йоджана равна росту человека, взятому 8000 раз. 1050 йоджанам диаметра соответствуют 3300 йоджан охвата, если принять для числа «пи» значение 22/7. Если принять рост человека равным 160 см, то тогда йоджана равна 12,8 км, и диаметр Земли равен 13.440 км — очень хорошее соответствие с действительным диаметром Земли! Для диаметра Луны Ариабхата принимает значение 315 йоджан, что даёт отношение диаметров Земли и Луны, равное 10/3. ПамятьИменем Ариабхаты названы:
Примечания
ЛитератураСочинения
Исследования
Ссылки |