Математи́ческий ма́ятник — осциллятор, представляющий собой механическую систему, состоящую из материальной точки на конце невесомой нерастяжимой нити или лёгкого стержня и находящуюся в однородном поле сил тяготения[1]. Другой конец нити (стержня) обычно неподвижен. Период малых собственных колебаний маятника длины , подвешенного в поле тяжести, равен
Математический маятник служит простейшей моделью физического тела, совершающего колебания: она не учитывает распределение массы. Однако реальный физический маятник при малых амплитудах колеблется так же, как математический с приведённой длиной.
Математический маятник со стержнем способен колебаться только в какой-то одной плоскости (вдоль какого-то выделенного горизонтального направления) и, следовательно, является системой с одной степенью свободы. Если же стержень заменить на нерастяжимую нить, получится система с двумя степенями свободы (так как становятся возможными колебания по двум горизонтальным координатам).
При колебаниях в одной плоскости маятник движется по дуге окружности радиуса , а при наличии двух степеней свободы может описывать кривые на сфере того же радиуса[1]. Нередко, в том числе в случае нити, ограничиваются анализом плоского движения; оно и рассматривается далее.
так как , а из действующих на точку сил тяжести и натяжения ненулевую компоненту даёт только первая. Следовательно, колебания маятника описываются обыкновенным дифференциальным уравнением (ДУ) вида
,
где неизвестная функция ― это угол отклонения маятника в момент от нижнего положения равновесия, выраженный в радианах, ― длина подвеса, ― ускорение свободного падения. Предполагается, что потерь энергии в системе нет. В области малых углов это уравнение превращается в
.
Для решения ДУ второго порядка, то есть для определения закона движения маятника, необходимо задать два начальных условия — угол и его производную при .
Решения уравнения движения
Возможные типы решений
В общем случае решение ДУ с начальными условиями для маятника может быть получено численно. Варианты движения (в случае, если маятник — это материальная точка на лёгком стержне), качественно, представлены на анимации. В каждом окне вверху показана зависимость угловой скорости от угла . По мере нарастания размаха поведение маятника всё сильнее отклоняется от режима гармонических колебаний.
Маятник висит
Малые колебания (размах 45°)
Колебания с размахом 90°
Колебания с размахом 135°
Колебания с размахом 170°
Фиксация в верхнем положении
Движение близкое к сепаратрисе
Вращение маятника
Гармонические колебания
Уравнение малых колебаний маятника около нижнего положения равновесия, когда уместна замена , называется гармоническим уравнением:
,
где ― положительная константа, определяемая только из параметров маятника и имеющая смысл собственной частоты колебаний. Кроме того, может быть осуществлён переход к переменной «горизонтальная координата» (ось лежит в плоскости качания и ортогональна нити в нижней точке):
.
Малые колебания маятника являются гармоническими. Это означает, что смещение маятника от положения равновесия изменяется во времени по синусоидальному закону[2]:
,
где — амплитуда колебаний маятника, — начальная фаза колебаний.
Если пользоваться переменной , то при необходимо задать координату и скорость , что позволит найти две независимые константы , из соотношений и .
Случай нелинейных колебаний
Вновь запишем полученное нами ДУ.
,
Выполним интегрирование обеих частей уравнения по :
,
Легко видеть, что
,
Тогда
,
Получившаяся постоянная интегрирования, как легко видеть, равна, где E - энергия математического маятника. Теперь подставим :
,
Прибавим к обеим частям :
,
,
,
Как легко видеть, в этом уравнении можно разделить переменные. Для этого заметим, что
Учитывая произвольность константы, можно утверждать, что
где — это синус Якоби. Для он является периодической функцией, при малых совпадает с обычным тригонометрическим синусом. Выполняя обратную замену и полагая константу равной нулю(чего всегда можно добиться правильным выбором начала отсчёта времени), получим закон движения для больших амплитуд
Период колебаний нелинейного маятника составляет
,
где K — эллиптический интеграл первого рода.
Для вычислений практически удобно разлагать эллиптический интеграл в ряд:
где — период малых колебаний, — максимальный угол отклонения маятника от вертикали.
При углах до 1 радиана (≈ 60°) с приемлемой точностью (ошибка менее 1 %) можно ограничиться первым приближением:
.
Точная формула периода, с квадратичной сходимостью для любого угла максимального отклонения, обсуждается на страницах сентябрьского выпуска журнала «Заметки американского математического общества» 2012 года[3]:
Движение маятника по сепаратрисе является непериодическим. В бесконечно далёкий момент времени он начинает падать из крайнего верхнего положения в какую-то сторону с нулевой скоростью, постепенно набирает её, а затем останавливается, возвратившись в исходное положение.
Факты
Несмотря на свою простоту, математический маятник связан с рядом интересных явлений.
Если амплитуда колебания маятника близка к , то есть движение маятника на фазовой плоскости близко к сепаратрисе, то под действием малой периодической вынуждающей силы система демонстрирует хаотическое поведение. Это одна из простейших механических систем, в которой хаос возникает под действием периодического возмущения[4].
Если точка подвеса не неподвижна, а совершает колебания, то у маятника может появиться новое положение равновесия. Если точка подвеса достаточно быстро колеблется вверх-вниз, то маятник приобретает устойчивое положение «вверх тормашками». Такая система называется маятником Капицы.
В условиях вращения Земли при достаточно длинной нити подвеса плоскость, в которой маятник совершает колебания, будет медленно поворачиваться относительно земной поверхности в сторону, противоположную направлению вращения Земли (маятник Фуко).
↑ 12Главный редактор А. М. Прохоров.Маятник // Физический энциклопедический словарь. — М.: Советская энциклопедия (рус.). — 1983. — Статья в Физическом энциклопедическом словаре
↑Скорость и ускорение маятника при гармонических колебаниях также изменяются во времени по синусоидальному закону.