Символ КронекераСимвол Кро́некера (или дельта Кронекера или кронекериа́н) — индикатор равенства элементов, формально: функция двух целых переменных, которая равна 1, если они равны, и 0 в противном случае[1]: Например, , но . ИспользованиеВ линейной алгебре символ Кронекера может использоваться для записи условия ортонормированности базиса , а также — в общем случае — для определения дуальных базисов , где круглыми скобками обозначено скалярное произведение, а также для краткой записи единичной матрицы размера n: (элементы единичной матрицы записываются как ). В тензорном исчислении символ Кронекера обычно трактуется как единичный тензор[2]. В частности, могут использоваться различные написания для подчеркивания его принадлежности к определённому типу тензоров — соответственно дважды ковариантным, один раз ковариантным и один контравариантным и дважды контравариантным. При этом обычная практика обозначать той же буквой тензор после поднятия или опускания индекса не распространяется на дельту Кронекера. Иначе говоря, в общем случае — не представляют один и тот же тензор (за исключением представления в ортонормированных базисах, что, собственно говоря, является признаком, выделяющим ортонормированные базисы из всех)[3]. Также может использоваться в соответствии со своим определением для записи разнообразных результатов или условий и в других контекстах. ИсторияСимвол был введён Кронекером в 1866 году[1]. Примечания
См. также
Information related to Символ Кронекера |