ПодскупУ математици, а посебно у теорији скупова, скуп A је подскуп скупа B ако се A садржи унутар B. Притом A може бити једнак B. ДефиницијеАко су A и B скупови, и сваки елемент из A такође елемент из B, онда:
Ако је A подскуп од B, али A није једнак B (то јест, постоји барем један елемент у B који не постоји у A), онда
За сваки скуп S, релација инклузије ⊆ је парцијално уређење на скупу 2S свих подскупова од S (партитивни скуп од S). Симболи ⊂ и ⊃Понекад се записује A ⊂ B уместо A ⊆ B да се означи да је A подскуп од B. Слично, понекад се пише A ⊃ B да се означи да је A надскуп од B. По овој конвенцији, ако је све шта знамо да је A ⊂ B, још увек је могуће да су A и B једнаки скупови. Некад се симболи ⊂ и ⊃ користе да означе праве подскупове или надскупове уместо и . Ово коришћење чини симболе ⊆ и ⊂ аналогне симболима ≤ и <. На пример, ако x ≤ y онда x може бити једнако y, али не мора, али ако је x < y, онда x сигурно није једнако y, већ је строго мање од y. Слично, ако се узме да ⊂ значи прави подскуп, онда ако A ⊆ B, следи да A може али не мора бити једнако B, али ако A ⊂ B, онда A сигурно није једнако B. Примери
|